cours maths 2de

Trigonométrie : cours de maths en 2de en PDF.

La trigonométrie à travers un cours de maths 2de et plus précisément sur les fonctions sinus et cosinus vous sera avantageux. Nous aborderons le cercle trigonométrique et la périodicité de ces fonctions ainsi que leur courbes représentatives respectives.  Par la suite, nous découvrirons les formules de trigonométrie faisant intervenir le cosinus et le sinus.

I. Les fonctions trigonométriques

Dans cette leçon, (O,\vec{u},\vec{v}) est un repère orthonormal de sens direct.

Les points A et B sont donc sur le cercle trigonométrique de centre O et de rayon 1.

cercle trigonométrique

1.Définition du sinus et du cosinus d’un nombre réel.

Définition :

A tout réel \alpha, on associe le point M du cercle trigonométrique tel que l’angle orienté (\vec{u},\vec{OM}) mesure \alpha radian(s).

Le cosinus et le sinus de \alpha sont donc les coordonnées de M dans le repère (O,\vec{u},\vec{v}).

On a:   M(cos\alpha\,,sin\,\alpha\,) c’est à dire :  \vec{OM}=cos\alpha\,\vec{u}+sin\alpha\,\vec{\,v}.

angle orienté

2.Premières propriétés en trigonométrie .

Propriétés :
  • Si \alpha=0 alors le point du cercle trigonométrique associé à \alpha est le point A(1 ; 0). Donc cos(0) = 1 et sin(0) = 0
  • Si \alpha\,=\frac{\pi}{2}, alors le point du cercle trigonométrique associé à \alpha est B(0 ; 1).Donc  cos(\frac{\pi}{2})=0 et  sin(\frac{\pi}{2})=1.
  • Si \alpha\,=\pi, alors x est associé à A'(-1 ;0). Donc cos(\,\pi\,)=-1 et  sin(,\pi,)=0.
  • Si \alpha\,=-\frac{\pi}{2}  alors \alpha  est associé à B'(0 ;-1). Donc  cos(-\frac{\pi}{2})=0 et  sin(-\frac{\pi}{2})=-1.
  • Si \alpha  est un réel alors pour tout entier relatif k, les réels \alpha  et \alpha\,+2k\pi sont associés au même point M.
    En effet ce sont deux mesures de l’angle orienté .
    Donc, pour tout nombre réel x et tout entier relatif k, on a:

cos(\,\alpha\,+2k\pi)\,=\,cox(\,\alpha\,)

sin(\,\alpha\,+2k\pi)\,=\,sin(\,\alpha\,)

On dit que les fonctions cosinus et sinus sont périodiques de période 2\pi , car T = 2\pi est le plus petit réel strictement positif tel que: cos (\alpha + T) = cos \alpha   et sin (\alpha + T) = sin \alpha .

Le théorème de Pythagore permet de prouver l’égalité:
(sin\,\alpha\,)^2\,+\,(cos\,\alpha)^2\,=\,1 que l’on écrit aussi sous la forme: sin^2\,\alpha\,+\,cos^2\,\alpha\,=\,1.

3.Signe du sinus et du cosinus en trigonométrie 

Par définition, le sinus et le cosinus de tout nombre réel appartiennent à l’intervalle [-1 ; 1].

Plus précisément, la position de M nous permet d’en savoir plus sur le cosinus et le sinus de \alpha.

Propriétés :

On a :

  • Si \alpha\,\in[0+2k\pi,\pi+\,2k\pi]  alors sin\alpha\,\geq\,\,0.
  • Si \alpha\,\in[-\frac{\pi}{2}+2k\pi\,\frac{\pi}{2}+\,2k\pi]  alors cos\alpha\,\geq\,\,0.

II. Cosinus et sinus  d’angles remarquables  en trigonométrie 

Tous ces résultats à connaître parfaitement sont résumés dans le tableau ci-dessous:

tableau cos sin

III. Visualisation des sinus et cosinus sur le cercle trigonométrique.

C’est un outil indispensable, qu’il est utile de bien visualiser afin d’être capable de retrouver rapidement les valeurs indiquées ci-dessous.

cos sin

IV. Formules usuelles concernant les angles associés.

Propriétés :

Pour tout réel x, on a:

cos(-x)\,=\,cos(x) et sin(-x)\,=\,-sin(x).

La fonction cosinus est donc paire et la fonction sinus est impaire.

Propriétés :

Pour tout réel x, on a:

cos(\pi – x) = – cos(x)  et    sin(\pi – x) = sin(x).

Propriétés :

Pour tout réel x, on a:

cos(\pi + x) =   – cos(x) et  sin(\pi + x) =   – sin(x).

Propriétés :

Pour tout réel x, on a:

cos(\frac{\pi}{2}+x) = – sin(x)   et   sin(\frac{\pi}{2}+x) = cos(x).

Propriétés :

Pour tout réel x, on a:

cos(\frac{\pi}{2}-x) = sin(x)   et   sin(\frac{\pi}{2}-x) = cos(x).

V. Représentations graphiques des fonctions sinus et cosinus en trigonométrie 

courbes sinus cosinus

5/5 - (1 vote)
Télécharger puis imprimer cette fiche en PDF.

Télécharger ou imprimer cette fiche «trigonométrie : cours de maths en 2de en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.


D'autres fiches analogues :


Inscription gratuite à Mathématiques Web. Mathématiques Web c'est 2 212 818 fiches de cours et d'exercices téléchargées.