exercices maths 2de

Vecteurs et repères : exercices en 2de corrigés | Seconde.

Des exercices de maths sur les vecteurs et les repères en seconde (2de)vous aident à maîtriser ce chapitre clé de mathématiques de la seconde. Ainsi, un vecteur est une quantité physique qui a une direction et une norme. Par conséquent, on peut représenter un vecteur par des coordonnées cartésiennes dans un repère orthonormal, c’est-à-dire un repère dans lequel les axes sont orthogonaux (perpendiculaires) et ont des longueurs égales.

Exercice 1 :

Soit ABCD un trapèze convexe tel que :   (AB)//(DC),   AB = 5  et  DC = 7.

1)  a) A partir de ces hypothèses, montrer que   \vec{DC}=\frac{7}{5}\vec{AB}

b) Exprimer \vec{AC} en fonction de \vec{AB} et \vec{AD}.

2)  On considère le point E tel que 5\vec{EC} = 2\vec{DE}

a) Déterminer \vec{DE} en fonction de \vec{DC} , puis placer E.

b) Montrer que les segments [AE] et [BD] ont même milieu.

3)  A chaque réel x , on fait correspondre le point M tel que \vec{AM} =  x\vec{AB} +\vec{AD}.

a) Pour quelle valeur de x le point M est-il le symétrique de C par rapport à D ?

b) Exprimer \vec{DM}  en fonction de \vec{AB}. Sur quelle ligne se déplace le point M lorsque x varie ?

Exercice 2 :

Soit ABC un triangle et x un réel.

A chaque valeur de x on associe les points E et F tels que : \vec{AE}=\frac{1}{3}\vec{AB}\,+x\vec{AC}    et   \vec{AF}=x\vec{AB}\,+\frac{1}{3}\vec{AC}

1) Construire E et F pour x=-\frac{1}{2}.

2) Montrer que, pour tout x de \mathbb{R}, \vec{EF} est colinéaire à \vec{BC} .

3) Pour quelles valeurs de x a-t-on :

a) E = F ?

b) BCFE est un parallélogramme ?

Exercice 3 :

Soit ABCD un quadrilatère, on défini les points M et N par : \vec{AM}=a\vec{AB}   et  \vec{DN}=a\vec{DC}   ( a étant un réel)

1) Montrer que pour tout réel a , on a : \vec{MN}=a\vec{BC}\,+(1-a)\vec{AD}

2) Que dire de MBCN si ABCD est un parallélogramme ?

Exercice 4 :

Soit un réel a et un triangle RST. Soit aussi les points M, N et U définis par
\vec{RM}=\frac{1}{4}\vec{RS}\,+(a+\frac{5}{2})\vec{RT}    ;   \vec{RN}=(a+2)\vec{RS}\,+\frac{3}{4}\vec{RT}      ;      \vec{RU}=\,\frac{3}{4}\vec{RS}\,-(a+\,\frac{3}{2})\vec{RT}

1) Placer les points M, N et U lorsque   a = 0.

2) Démontrer que pour tout réel a , les vecteurs \vec{MN} et  \vec{ST} sont colinéaires. Que peut-on en déduire ?

3) Démontrer que pour tout réel a , SMTU est un parallélogramme

Exercice 5 :

Soit ABC un triangle.

1) On donne G tel que \vec{GA}\,+2\vec{GB}\,+3\vec{GC}\,=\vec{0} .
Déterminer \vec{CG} en fonction de  \vec{CA} et  \vec{CB} puis construire G.

2) Soit H tel que \vec{AH}\,=\frac{2}{3}\vec{AB} , montrer que G est le milieu de [HC]

3) Montrer que pour tout point M,   \vec{MA}+2\vec{MB}\,+3\vec{MC}\,=6\vec{MG}.

4) Déterminer et construire l’ensemble des points M du plan tels que :

a) \,\|\,\vec{MA}+2\vec{MB}\,+3\vec{MC}\,\,\|=6AB.

b)  \vec{MA}+2\vec{MB}\,+3\vec{MC} est colinéaire à \vec{BC}.

Exercice 6 :

Recopier et compléter les égalités suivantes avec le nombre réel manquant.

Vecteurs

Exercice 7 :

1.A partir de la figure, citer un vecteur :

a) opposé à \vec{CD}.

b) de même direction et de même sens que \vec{AC}.

c) de même direction que \vec{BC} mais de sens contraire.

d) égal au vecteur \vec{BA}.

Vecteurs

Exercice 8 :

A partir de la figure :

  1. Donner les images des points C, D, E par la translation de vecteur \vec{AB}.
  2. Citer trois vecteurs égaux au vecteur \vec{AB}.
  3. Citer les trois parallélogrammes définis par les trois égalités vectorielles du 2.

Parallélogramme et vecteurs

Exercice 9 :

1.Reproduire la figure ci-dessous.

Représentants de vecteurs

2.Construire un représentant de chacun des vecteurs suivants.

a)-\vec{r}                b)\vec{w}+\vec{r}        c)\vec{r}+\vec{v}          d)\vec{w}-\vec{r}

Exercice 10 :

En utilisant les points de la figure, donner un vecteur égal à :

Figures géométriques

Exercice 11 :

  1. Calculer les déterminants des vecteurs suivants.
  2. Dire s’ils sont colinéaires.
  3. S’ils sot colinéaires, trouver un coefficient de colinéarité.

Vecteurs colinéaires

Exercice 12 :

Soit trois points A, B et C distincts non alignés.

Les vecteurs \vec{u} et \vec{v} sont-ils colinéaires dans les cas suivants ?

Colinéarité de vecteurs

3.2/5 - (616 votes)
Télécharger puis imprimer cette fiche en PDF.

Télécharger ou imprimer cette fiche «vecteurs et repères : exercices en 2de corrigés | Seconde.» au format PDF afin de pouvoir travailler en totale autonomie.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.


Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 166 410 fiches de cours et d'exercices téléchargées.