cours maths 2de

Vecteurs et repérage dans le plan et translation : cours en 2de.

Cours sur les vecteurs et la translation, nous reverrons le repérage dans le plan et les coordonnées dans un repère orthonormé ainsi que les coordonnées d’un vecteur.

A la fin de cette leçon, l’élèves devra avoir qcquis les savoirs-faire suivants :

  • Savoir calculer la longueur d’un segment dans un repère orthonormé;
  • Savoir déterminer les coordonnées du milieu d’un segment;
  • Savoir déterminer si deux vecteurs sont égaux avec ou sans coordonnées;
  • Savoir déterminer, demander, affecter une valeur et afficher une variable dans un algorithme.
  • Milieu d’un segment;
  • Distance entre deux poiints ou norme d’un vecteur du plan;
  • Egalité de vecteurs (coordonnées, parallélogramme, vecteurs et milieu).

I.Notion de vecteur et translation

1.Translation de vecteur \vec{AB}

Défintion :

Soient A et B deux points du plan.

La translation qui transforme A en B associe à tout point du plan C le point D tel que les segments [AD] et [BC] aient le même milieu.

On l’appelle la translation de vecteur \vec{AB}  , souvent notée  t_{\vec{AB}}.

Remarque :

Le quadrilatère ABDC est alors un parallélogramme, éventuellement aplati.

Construire l’image du point C et celle du point N par la translation de vecteur \vec{AB}.

Image d'un point par translation

2. Vecteurs égaux

Définition :

Deux vecteurs \vec{AB}   et   \vec{CD}    sont égaux si la translation qui transforme A en B transforme également C en D.

On note    \vec{AB}=\vec{CD}.

vecteurs égaux

Propriété :

Deux vecteurs et sont égaux si et seulement si le quadrilatère ABDC est un parallélogramme, éventuellement aplati.

3.Représentant d’un vecteur

Définition :

La translation de vecteur \vec{AB} transforme aussi C en D, E en F.

On a \vec{AB}=\vec{CD}=\vec{EF} .

Ils sont les représentants d’un même vecteur, que l’on peut noter \vec{u} par exemple.

4.Vecteurs particuliers

Définitions :

Le vecteur nul, associé à la translation qui transforme A en A, B en B, C en C….

Nous avons \vec{AA}=\vec{BB}=\vec{CC}=\vec{0}

Le vecteur opposé au vecteur  \vec{AB}  est le vecteur associé à la translation qui

transforme B en A : c’est le vecteur \vec{BA}.

Nous avons \vec{BA}=-\vec{AB}.

Définition du milieu d’un segment :

Le point I est le milieu du segment [AB], si et seulement si, \vec{AI}=\vec{IB}.

II.Coordonnées dans un repère orthonormé du plan

Dans un repère orthonormé du plan (O,\vec{i},\vec{j}), on considère un vecteur \vec{u} et M l’image du point O par la translation de vecteur \vec{u}.

1.Définition et propriétés

Définition :

Les coordonnées du vecteur \vec{u} sont les coordonnées du point M tel que :

\vec{OM}=\vec{u}.

On note \vec{u}\binom\,{x}{y} ou \vec{u} ( x;y ).

Remarque :

Le vecteur nul a pour coordonnées \vec{0}\binom\,{0}{0}.

Propriété :

Deux vecteurs sont égaux si et seulement si ils ont les mêmes coordonnées dans le même repère.

2.Coordonnées d’un vecteur dans le plan

Définition :

Dans un repère orthornormé du plan, Soient A et B les points de coordonnées  A\binom\,{x_A}{y_A} et B\binom\,{x_B}{y_B}.

Les coordonnées du vecteurs  coordonnées du \vec{AB} sont \vec{AB}\binom\,{x_B-x_A}{y_B-y_A}.

3.Norme d’un vecteur.

Définition :

La norme d’un vecteur \vec{u} est la longueur du vecteur  \vec{u} que l’on note  \| \vec{u } \|.

Dans un repère orthonormé du plan  :

Si \vec{u}\binom\,{x}{y} alors   \| \vec{u } \|=\sqrt{x^2+y^2}.

Remarque :

Cette égalité provient du théorème de Pythagore.

4. Distance entre deux points ou longueur d’un segment

Propriété :

Dans un repère orthonormé du plan.

Si A\binom\,{x_A}{y_A} et B\binom\,{x_B}{y_B} alors   \| \vec{AB } \|=\sqrt{ (x_B-x_A )^2+(y_B-y_A)^2}.

5.Coordonnées du milieu d’un segment

Propriété :

Le point I est le milieu du segment [AB] a pour coordonnées :

I\binom\,{\frac{x_A+x_B}{2}}{\frac{y_A+y_B}{2}}


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «vecteurs et repérage dans le plan et translation : cours en 2de.» au format PDF afin de pouvoir travailler en totale autonomie.



Des cours et exercices en 2de expliqués en vidéos



Rejoignez-nous sur notre chaîne YouTube

Concours : gagnez une PS4 ou un Ipad Pro

Nouveau concours avec une console Playstation 4 (PS4 ) ou une tableatte Ipad Pro à gagner.
Le tirage au sort sera effectué avant le 30 juin 2020 et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les 1 000 premiers abonnés de notre nouvelle chaîne Youtube.
je participe au tirage au sort en m'abonnant à la chaîne YouTube.

Inscription gratuite à Mathématiques Web. Mathématiques Web c'est 1 531 781 fiches de cours et d'exercices téléchargées.
Rejoignez les 29 326 membres de Mathématiques Web, inscription gratuite.

Mathématiques Web

GRATUIT
VOIR