Les inéquations et tableaux de signes : exercices de maths en 2de corrigés en PDF.

   Les inéquations et les tableaux de signes à travers des exercices de maths en 2de corrigés. En effet, ce chapitre englobe des connaissances assez pratiques et générales. Une fois que l’élève parvient à bien les comprendre et les traiter, cela devient un jeu d’enfant pour lui. L’élève devra savoir résoudre des inéquations soit par le calcul, en appliquant les propriétés qui permettent de modifier les inégalités sans en méfier l’ensemble solution, soit la résoudre graphiquement en exploitant le tableau de variation ou en créant un tableau de signes. Ces énoncés disposent de leur correction et vous permettent, par conséquent, de vous auto-corriger afin de réussir votre année de seconde.

Exercice 1 :

Résoudre dans R :

1) 2 x – 5 < 3 x – 7

2) \frac{1+4x}{1-4x}=\frac{1-4x}{1+4x}

3) x2 + x + \frac{1}{4}< (2 x + 1)2

Exercice 2 :

1) Démontrer que pour tout réel x, on a   x^2-x= ( x-\frac{1}{2}  )^2-\frac{1}{4} .

2) Soient deux réels x et y tels que x + y = 1, démontrer que :

a) x y <   \frac{1}{4}            b) x2 + y2 >\frac{1}{2}

Exercice 3:

Déterminer le signe des expressions suivantes :

a) x2 + 1

b) –\sqrt{x}

c) (x – 1)² + 4

d) –x2 – 7

e) –(–x – 2)²

f) 1 +\frac{4}{x^2}

g) \sqrt{x^2+1}+3

Exercice 4   :

Dresser, dans chacun des cas suivants, le tableau de signes de A(x).

a) A(x) s’annule en 5 et –2 ; A(x) est strictement positif pour x supérieur à 5 ou inférieur à –2 et A(x) < 0 sur ]–2 ; 5[.

b) A(x) ≤ 0 pour x \in [–3 ; 4] et A(x) ≥ 0 pour x \in ]–\infty ; –3] \cup [4 ; + \infty[.

c) A(x) n’existe pas en –1 ; le réel 3 est l’unique solution de l’équation A(x) = 0 et A(x) ≥ 0 sur ]– \infty ; –1[ \cup  ]–1 ; 3] et A(x) est négatif pour x ≥ 3.

 Exercice 5 : 

Étudier le signe des expressions suivantes dans un tableau de signes.

a) (5x – 1)(1 – x)                     b) (3x + 4)(2x + 3)                  c) 3x(x – 2)

d) (2x + 1)(–5 – x)(x – 7)        e)   \frac{4-x}{2+x}                                 f) \frac{-5}{x(x-1)}

 Exercice 6:

Étudier le signe des expressions suivantes après avoir factorisé ou mis au même dénominateur.

a) (2x – 1)(2 + x) – (2x – 1)²             b) x2 – (2x + 1)²            c) \frac{x}{x+4}-2

Exercice 7  : 

1/ Déterminer une expression f(x) dont le tableau de signes est :

x

– \infty

–2

3

\infty

signe de f(x)

+

0

0

+

2/ Déterminer une expression g(x) dont le tableau de signes est :

x

\infty

1

4

+\infty

signe de g(x)

+

0

Exercice 8:

L’étude du signe de l’expression B(x) a permis d’établir le tableau ci-dessous :

x

\infty

–2

1

3

+\infty

signe de B(x)

0

+

+

0

Les affirmations suivantes sont-elles vraies ?

a) B(4,5) est négatif.                          b) B(1) = 0

c) –2 et 3 sont les solutions de l’équation B(x) = 0.

d) B(0) > 0                                         e) Si x < 0 alors B(x) < 0.

f) L’ensemble des solutions de B(x) ≤ 0 est ]– \infty; –2] \cup[3 ; +\infty[.

g) Les nombres tels que B(x) > 0 sont les nombres vérifiant –2 ≤ x ≤ 3.

Exercice 9 :

Résoudre les inéquations suivantes :

a) (2x – 5)(–x – 3) ≥ 0             b) (x – 4)(2x + 3) + (x – 4)(x – 7) ≤ 0

c) (2x – 5)(–x – 3) ≤  –15       d) (x + 1)² > (2x – 3)²

e)\frac{3x-1}{2-x} ≤  0                          f) \frac{4x-7}{3x+2}<  4

g) (–x + 1)(6x – 5)(x + 3) + (–x + 1)(6x – 5)(x – 5) > 0

Exercice 10 : 

Soit f et g les fonctions définies sur par f(x) = x2 et g(x) = 4x – 3

1/ a) Tracer les courbes représentant ces deux fonctions sur l’écran de la calculatrice.

b) En déduire l’ensemble des solutions de l’inéquation f(x) ≥ g(x).

2/ a) Développer (x – 1)(x – 3).

b) Résoudre, par le calcul cette fois, f(x) ≥ g(x).

Voir Exercices 11 à 20...
Voir Exercices 21 à 23...

Consulter le corrigé de cet exercice de maths

Télécharger puis imprimer cette fiche en PDF.

Télécharger ou imprimer cette fiche «les inéquations et tableaux de signes : exercices de maths en 2de corrigés en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.

Réviser les cours et exercices avec nos Q.C.M :


D'autres ressources pour progresser en autonomie :




Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 254 130 fiches de cours et d'exercices téléchargées.


Mathématiques Web

GRATUIT
VOIR