exercices maths tnale

Exponentielle : exercices en terminale corrigés en PDF.

Des exercices de maths corrigés en terminale sur les fonctions exponentielles.

Ces exercices font intervenir les notions suivantes :

  1.  définition de l’exponentielle;
  2. sens de variation de la fonction exponentielle;
  3. dérivée de la fonction exponentielle;
  4. limites de la fonction exponentielle;
  5. résoudre des équations et inéquations;
  6. courbe de Gauss;
  7. simplifier des exponentielles à l’aide des formules algébriques.

Exercice n° 1 :

Ecrire à l’aide d’une seule exponentielle :

a. \frac{1}{e^3}

b. e^{-2}\times  \,e^7

Exercice n° 2 :

f est une fonction dérivable sur \mathbb{R} telle que f'=f\,\,et\,\,f(0)=-\frac{1}{2}.

g est la fonction définie sur \mathbb{R} par g(x)=-2f(x).

  1. Vérifier que g est dérivable sur \mathbb{R} et que g’ = g.
  2. Calculer g(0); en déduire l’expression de g(x).
  3. En déduire l’expression de f(x).

Exercice n° 3 :

Dans chaque cas, écrire l’expression avec une seule exponentielle.

1.

a. e^4\times  \,e^6

b.  e\times  \,(e^5)^2

c.  \frac{e^{30}\times  \,e^{-10}}{e^{10}}

2. a désigne un nombre réel, simplifier l’écriture de chaque expression :

a)\,\,\frac{e^{2a}\times  \,e^{-a}}{e^{5a}}\,\,;b)\,\,\frac{e^{2a}+1}{e^{1-a}}\,\,;\,\,c)(e^a)^3\times  \,e

Exercice n° 4 :

f est la fonction définie sur ]-1;+\infty[ par f(x)=\frac{e^x}{1+x}.

Dans un repère, \xi est la courbe représentative de la fonction f et T_a est la tangente à \xi au point A d’abscisse a avec a>-1.

1. donner une équation de T_a.

2. Démontrer qu’il existe deux valeurs de a pour lesquelles T_a passe par l’origine du repère.

Exercice n° 5 :

On modélise la température moyenne T à l’intérieur d’un congélateur en posant :

T(t)=19,5e^{-7\times  \,10^{-4}t}-10,5  où t\in[0;+\infty[ correspond au temps, exprimé en minutes, écoulé

depuis sa mise en marche et T(t) sa température en °C.

1. Donner la température moyenne à l’intérieur du congélateur :

a. avant sa mise en marche;

b. après une journée de fonctionnement.

2. Etudier la limite de T en +\infty et interpréter le résultat obtenu.

Exercice n° 6 :

Ecrire les réels donnés sous la forme exponentielle e^k où k est un entier.

1)e^{-7}\times  \,e^3

2)e^{-1}\times  \,e^{-5}

3)e^2,\times  \,e

4)e\times  \,e^{-1}

5)\frac{1}{e}

6)\frac{1}{e^{-1}}

7)\frac{1}{e^2}

8)\frac{1}{e^{-3}}

9)\frac{e^{-3}}{e^2}

10)\frac{e}{e^{-1}}

11)\frac{e^{-2}}{e}

12)\frac{e^2\times  \,e^{-3}}{e^5}

13)(e^2)^3

14)(e^3)^2

15)(e^{-1})^6

16)e\times  \,(e^{-1})^3

Exercice n° 6 :

Ecrire l’expression donnée sous la forme e^A où A est une expression.

1)e^x,\times  \,e^2

2)e^{-1}\times  \,e^{-x}

3)e\times  \,e^x

4)e^x\times  \,e^x

5)e^x\times  \,e^{-x}

6)e^{x-1}\times  \,e^x

7)(e^x)^2

8)(e^{-x+1})^3

9)(2e^x)^3

10)\frac{e^{5x}}{e^x}

11)\frac{e^{x+1}}{e}

12)\frac{e^3}{e^{2x-1}}

Exercice n° 7 :

On donne l’expression de trois fonctions f,g et h définies et dérivables sur \mathbb{R}.

Calculer la dérivée des fonctions f, g et h.

1)f(x)=e^{0,5x};g(x)=e^{3x};h(x)=e^{-x}.

2)f(x)=e^{x+1};g(x)=e^{1-2x};h(x)=e^{-3x+1}

3)f(x)=2+e^{2x};g(x)=1-e^{-2x};h(x)=e^{-3x+1}

4)f(x)=2+e^{2x};g(x)=1-e^{-2x};h(x)=1+2e^{-x}

Exercice n° 8 :

On estime que les futures découvertes de pétrole dans le monde peuvent être modélisées,
à partir de 2015, par la fonction f définie sur [15 ; +\infty[ par:

f(x)=17280e^{-0,024x}

où f(x) représente, en millions de barils, l’estimation de la quantité
de pétrole qui sera découverte au cours de l’année 2000 + x.
1. Déterminer la limite de la fonction f en +\infty.

2. Calculer f ‘ (x) et en déduire le sens de variation de la fonction f sur l’intervalle [15 ; +\infty [.
3. Interpréter les résultats des questions 1 et 2.

exponentielle

Exercice n° 9 :

Soit f la fonction définie sur \mathbb{R} par f(x)=2-e^x+x.

  1. Exprimer f\,'\,(x) en fonction de x.

2) Justifier que, pour tout réel x de l’intervalle [0;+\infty[, f'(x)\leq\,\,0.

3) En déduire les variations de la fonction f sur \mathbb{R}.

Exercice n° 10 :

Ecrire les expressions suivantes sous la forme exponentielle e^A, où A est une expression.

1)\frac{e^{2x+1}}{e^{1-x}}

2)\frac{e^{-x+2}\times  \,e^{-2x-1}}{e^{3x+2}\times  \,e^{-x-1}}

3)\frac{(e^{-x})^2\times  \,e^{-x+1}}{e^{x+2}\times  \,(e^{-x-1})^3}

Exercice n° 11 :

Démontrer les égalités suivantes :

Pour tout réel x,  -2e^{2x}+3e^x+2=(1-2e^x)(2-e^x).

Pour tout réel x,  \frac{e\times  \,e^x}{e^{2+3x}}=(e^{-x-0,5})^2.

Pour tout réel x, \frac{e^{1-3x}}{1+e^{-3x}}=\frac{e}{e^{3x}+1}

Exercice n° 12 :

1)Démontrer que l’équation e^x-2e^{-x}+1=0 est équivalente à l’équation (e^x)^2+e^x-2=0.

2)Résoudre dans \mathbb{R} l’équation e^x-2e^{-x}+1=0.

Exercice n° 13 :

1)Résoudre dans \mathbb{R} l’inéquation e^{-x}-e^x>0.

2)En déduire le signe de 1-\frac{1+e^x}{1+e^{-x}} sur \mathbb{R}.

Exercice n° 14 :

Soit f la fonction définie sur \mathbb{R}^* par f(x)=\frac{e^x+1}{x}

et g la fonction définie sur \mathbb{R} par g(x)=\frac{x+1}{e^x}.

On donne ci-dessous les courbes représentatives C_f et C_g des fonctions f et g.

  1. Conjecturer les limites des fonctions f et g aux bornes de leur ensemble de définition.
  2. Démontrer ces conjectures.

exponentielle

3.7/5 - (604 votes)
Télécharger puis imprimer cette fiche en PDF.

Télécharger ou imprimer cette fiche «exponentielle : exercices en terminale corrigés en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.


Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 166 394 fiches de cours et d'exercices téléchargées.