cours maths 1ere

Dérivée : cours de maths en1ère à télécharger en PDF.

Cours de maths sur la dérivée d’une fonction.

Ce cours de maths sur la dérivée en première S est à télécharger gratuitement au format PDF.

Cette leçon fait intervenir les notions suivantes :

– définition de la dérivée en un point;

– aspect graphique de la dérivée;

– taux d’accroissement;

– dérivée d’une fonction usuelle;

– dérivée d’une somme;

– dérivée d’un produit;

– dérivée d’un quotient.

Ce cours de maths a été rédigé par un enseignant de l’éducation nationale.

I. Nombre dérivé et dérivée d’une fonction

f est une fonction définie sur un intervalle I.

La courbe (C) ci-dessous est la représentation graphique de f dans un repère orthonormal (O,\vec{i},\vec{j}).

M et N sont deux points de (C) d’abscisses respectives a\in\,I et x\,=\,a\,+\,h\,\in\,Ih\in\,\mathbb{R}^* .

nombre dérivé

Définition 1

Si f est une fonction définie sur un intervalle I et si a\in\,I.
Lorsqu’il existe un nombre réel d tel que, pour tout réel h proche de 0, on ait:

\lim_{h\,\to\,0}\frac{f(a+h)-f(a)}{h}=d

On dit que la fonction f est dérivable en a et que d = f ‘(a) est le nombre dérivé de f en a.

Définition 2

Si f est une fonction définie sur un intervalle I et si a\inI.
Lorsqu’il existe un nombre réel d tel que, pour tout réel x\inI et proche de a, on ait:

\lim_{x,\to,a}\frac{f(x)-f(a)}{x-a}=d

On dit que la fonction f est dérivable en a et que d = f ‘(a) est le nombre dérivé de f en a.

II. Fonction dérivable sur un intervalle I

Définition :

On dit que f est dérivable sur un intervalle I lorsqu’elle est dérivable en tout point de I

Remarques sur les notations et les « manies des physiciens »

Les physiciens expriment la différence h = x – a par la le symbole \Delta\,x (accroissement de la variable x au voisinage du point a) et la différence f(x) – f(a) par \Delta\,y ( accroissement correspondant entre les images de x et de a qu’ils assimilent aux ordonnées y).

Avec ces notations, ils écrivent alors au voisinage de a: \lim_{\Delta\,x\,\to\,0}\frac{\,\Delta\,y}{\Delta\,x\,}=f'(a).

De façon générale, sur un intervalle I, en notant « y » la fonction « f », la fonction dérivée de y sera notée: f'=\frac{dy}{dx}.

Historiquement, la notation f\,'(x)est due à Newton et la notation différentielle \frac{dy}{dx} provient de Leibniz.

III. Equation de la tangente et approximation affine de f au voisinage de x = a

En reprenant les données du début de la leçon et l’illustration graphique et en supposant que la fonction f est dérivable en a:
La tangente (MP) à la courbe (C) en M d’abscisse a existe.

Elle a pour coefficient directeur m = f ‘(a).

Son équation est donc de la forme: y = mx + p, où m = f ‘(a) et son  ordonnée à l’origine p est à calculer.
Pour cela, il suffit d’écrire que (MP) passe par M( a ; f(a) ).

On a donc: f(a)\,=,f\,'(a)\,\times  \,a\,+\,p.
Ceci donne: p\,=\,f(a)\,-\,a\,f\,'(a).

Donc  y = f ‘(a) x + f(a) – a f ‘(a) que l’on écrit souvent sous l’une des formes, plus faciles à retenir:

\mathbf{y\,=\,f\,'(a)\,(x-a)\,+\,f(a)}       ou          \mathbf{y\,-\,f(a)\,=\,f\,'(a)\,(x-a)}.

Donc, la tangente (MP) à la courbe (C) en M est la représentation graphique de la fonction affine g:

g:x\,\mapsto  \,f'(a)(x-a)+f(a)

Montrons que cette fonction affine est une approximation de la fonction f lorsque x est proche de a.
En effet, l’ordonnée du point P d’abscisse x = a + h est: g(x)\,=\,f\,'(a)\,(x-a)\,+\,f(a).

Elle s’écrit aussi:  g(a\,+\,h)\,=\,f\,'(a)\,(a\,+\,h\,-\,a)\,+\,f(a) , c’est à dire: g(a\,+\,h)\,=\,f(a)\,+\,h\,f\,'(a).

Or, f(a+h) = f(a) + h f ‘(a) + h \varphi(h)  avec  \lim_{h\,\to\,0}\varphi\,(h)=\,0.

On en déduit que, lorsque h est voisin de zéro, on a:  f(a+h)  \approx  f(a) + h f ‘(a).

On peut donc conclure que, lorsque x est voisin de a, la fonction affine g:x\,\mapsto  \,f'(a)(x-a)+f(a)  est une approximation de la fonction .

On peut même montrer, mais nous l’admettrons ici, que c’est la meilleure approximation affine de f au voisinage de a.

IV.La dérivée des fonctions usuelles.

dérivée fonctions usuelles

V.Les formules de dérivation

formules dérivation

Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «dérivée : cours de maths en1ère à télécharger en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.


D'autres fiches dans la section Cours de maths en 1ère


Télécharger nos applications gratuites Mathématiques Web avec tous les cours,exercices corrigés.

Application Mathématiques Web sur Google Play Store.    Application Mathématiques Web sur Apple Store.    Suivez-nous sur YouTube.


D'autres articles analogues à dérivée : cours de maths en1ère à télécharger en PDF.
  • 91
    Les fonctions et leurs variations : cours de maths en 1ère en PDF.Un cours de maths en première sur les fonctions numériques. Cette leçon sur les fonctions et leurs variations en première fait intervenir les notions suivantes : - définition d'une fonction; - définition de l'image et de l'antécédent; - définition de l'ensemble de définition; - courbe représentative d'une fonction; - sens…
  • 91
    Fonction exponentielle : cours de maths en 1ère à télécharger en PDF.I. Définition et variations de la fonction exponentielle. Définition : Soit un réel strictement positif. Une fonction f définie pour tout réel  par est une fonction exponentielle. Propriété : Une fonction exponentielle f  définie sur  par   avec >0 est : strictement croissante sur si, et seulement si, >1; strictement…
  • 88
    Les équations et inéquations du second degré : cours de maths en 1ère en PDFUn cours sur les équations et inéquations du second degré en première à télécharger gratuitement au format PDF. Ce cours de maths sur les équations et inéquations fait intervenir les notions suivantes : - définition d'une équation et d'une inéquation du second degré à une inconnue ; - mise sous…
Les dernières fiches mises à jour

Voici la liste des derniers cours et exercices ajoutés au site ou mis à jour et similaire à dérivée : cours de maths en1ère à télécharger en PDF. .

  1. Puissances : exercices de maths en 4ème corrigés en PDF.
  2. La tortue et la salade : exercices sur le calcul littéral en 5ème corrigés.
  3. Contrôle sur la droite des milieux en quatrième (4ème)
  4. Contrôle sur le parallélogramme de maths en 5ème (cinquième ).
  5. Contrôle sur le théorème de Pythagore de maths en 4ème (quatrième).


Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 120 000 fiches de cours et d'exercices téléchargées.

Copyright © 2008 - 2023 Mathématiques Web Tous droits réservés | Mentions légales | Signaler une Erreur | Contact

.
Retour en haut
Mathématiques Web

GRATUIT
VOIR