Les fonctions et leurs variations : cours de maths en 1ère S en PDF.

cours maths 1ere

Un cours de maths en première S sur les fonctions numériques.Cette leçon sur les fonctions et leurs variations en première S fait intervenir les notions suivantes :

– définition d’une fonction;

– définition de l’image et de l’antécédent;

– définition de l’ensemble de définition;

– courbe représentative d’une fonction;

– sens de variation, fonction croissante, décroissante;

– tableau de variation.

Ce cours de maths sur les fonctions a été rédigé par un enseignant en mathématiques et il peut être télécharger gratuitement au format pdf.

I. Signe de la dérivée et sens de variation d’une fonction

1.Rappels sur la dérivée des fonctions usuelles

dérivée fonctions usuelles

2.Rappels sur les formules de dérivation

formules dérivation

Nous admettrons sans démonstration les théorèmes suivants:

 Théorème 1:

Si f est une fonction dérivable sur un intervalle [ a ; b ],
· Si, pour tout x\in] a ; b [, on a: f ‘(x) \geq\, 0, alors f est croissante sur [ a ; b ].
· Si, pour tout x\in] a ; b [, on a: f ‘(x) \leq\, 0, alors f est décroissante sur [ a ; b ].
· Si, pour tout x\in] a ; b [, on a: f ‘(x) = 0, alors f est constante sur [ a ; b ].

signe dérivée

Théorème 2:

Si f est une fonction dérivable sur un intervalle I,
· Si, pour tout x\inI, on a: f ‘(x) > 0 ( sauf peut-être en des points isolés où f ‘(x) = 0 ),
alors f est strictement croissante sur I.
· Si, pour tout x\inI, on a: f ‘(x) < 0 ( sauf peut-être en des points isolés où f ‘(x) = 0 ),
alors f est strictement décroissante sur I.

Notons deux cas particuliers utiles:

Propriété :

Si f est une fonction dérivable sur un intervalle [ a ; b ],
· Si, pour tout x \in ] a ; b [, on a f ‘(x) > 0 , alors f est strictement croissante sur [ a ; b ].
· Si, pour tout x \in ] a ; b [, on a f ‘(x) < 0 , alors f est strictement décroissante sur [ a ; b ].

Exemples:

1) Soit la fonction f définie sur \mathbb{R}  par f(x) = x2. f est dérivable sur \mathbb{R}  avec f ‘(x) = 2x.
· Pour tout x \in ]- \infty ; 0 ], on a f ‘(x) £ 0, donc f est décroissante sur ]- \infty ; 0 ].
· Pour tout  x \in [ 0 ; + \infty[, on a f ‘(x) ³ 0, donc f est croissante sur [ 0 ; + \infty[.
· Pour tout x \in ]- \infty ; 0 [, on a f ‘(x) < 0, donc f est strictement décroissante sur ]-¥ ; 0 ].
· Pour tout x \in ]0 ; + \infty [, on a f ‘(x) > 0, donc f est strictement croissante sur [ 0 ; + \infty[.

2) Soit la fonction f définie sur \mathbb{R}  par f(x) = x3. f est dérivable sur \mathbb{R}  avec f ‘(x) = 3x2.
· Pour tout x \in \mathbb{R}  , on a f ‘(x) ³ 0, donc f est croissante sur \mathbb{R} .
· Pour tout x \in ]- \infty; 0 [ È ]0 ; + \infty [, on a f ‘(x) > 0, donc f est strictement croissante sur \mathbb{R} .

3) Soit la fonction f définie sur \mathbb{R}  par f(x) = 2. f est dérivable sur \mathbb{R}  avec f ‘(x) = 0.
· Pour tout x \in \mathbb{R}  , on a f ‘(x) = 0, donc f est constante sur \mathbb{R} .

Nous admettrons sans démonstration les théorèmes suivants:

Théorème 3:

Si f est une fonction dérivable sur un intervalle I.
Si f admet un maximum local (ou un minimum local) en x = a différent des extrémités de l’intervalle I, alors: f ‘(a) = 0.

Théorème 4:

Si f est une fonction dérivable sur un intervalle I.
Si a\inI et a différent des extrémités de I.
Si f ‘(x) s’annule pour x = a en changeant de signe.
Alors f(a) est un extremum local de f sur I.

Exemples:
1) Soit la fonction f définie sur \mathbb{R}  par f(x) = x2. f est dérivable sur \mathbb{R}  avec f ‘(x) = 2x.
f ‘(x) s’annule en x = 0 en changeant de signe, donc f(0) = 0 est un extremum local de f.
Cet extremum est en réalité un minimum, car f est strictement décroissante sur ]- \infty ; 0 ] et strictement croissante sur [ 0 ; + \infty[. Ceci peut se résumer dans un tableau de variation.
2) Soit la fonction f définie sur \mathbb{R}  par f(x) = x3. f est dérivable sur \mathbb{R}  avec f ‘(x) = 3x2.
f ‘(x) s’annule en x = 0 sans changer de signe, il n’y a donc pas d’extremum en x = 0.

5/5 - (2 votes)


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «les fonctions et leurs variations : cours de maths en 1ère S en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.


Télécharger nos applications gratuites Mathématiques Web avec tous les cours,exercices corrigés.

Application Mathématiques Web sur Google Play Store. Application Mathématiques Web sur Apple Store.


D'autres articles analogues à les fonctions et leurs variations : cours de maths en 1ère S en PDF.

Mathématique web est un site de mathématiques destinés aux élèves et professeurs du collège (6ème, 5ème, 4ème et 3ème) au lycée (2de, 1ère et terminale. Vous trouverez sur ce site de nombreuses ressources vous permettant de vous familiariser avec les mathématiques. Toutes les cours et exercices de maths similaires à les fonctions et leurs variations : cours de maths en 1ère S en PDF. sont rédigés par des professeurs et sont conformes aux programmes officiels de l'éducation nationale.

  • 91
    Dérivée : cours de maths en1ère S et leçon en PDF en premièreCours de maths sur la dérivée d'une fonction. Ce cours de maths sur la dérivée en première S est à télécharger gratuitement au format PDF. Cette leçon fait intervenir les notions suivantes : - définition de la dérivée en un point; - aspect graphique de la dérivée; - taux d'accroissement;…
  • 87
    Fonction exponentielle : cours de maths en 1ère S et leçon en première en PDF.I. Définition et variations de la fonction exponentielle. Définition : Soit un réel strictement positif. Une fonction f définie pour tout réel  par est une fonction exponentielle. Propriété : Une fonction exponentielle f  définie sur  par   avec >0 est : strictement croissante sur si, et seulement si, >1; strictement…
  • 84
    Les équations et inéquations du second degré : cours de maths en 1ère S en PDFUn cours sur les équations et inéquations du second degré en première S à télécharger gratuitement au format PDF. .Ce cours de maths sur les équations et inéquations fait intervenir les notions suivantes : - définition d'une équation et d'une inéquation du second degré à une inconnue ; - mise…
  • 84
    Trigonométrie et relations métriques en 1ère S : cours en PDF en premièreUn cours de maths en première S sur les relations métriques dans un triangle quelconque. Ce cours de maths sur les relations métriques (relations d'Al-Kashi, théorème de Pythagore généralisé) Cette leçon est à télécharger gratuitement au format pdf. I.Les fonctions trigonométriques Dans cette leçon,  est un repère orthonormal de sens…
  • 81
    Produit scalaire : cours de maths en 1ère S et leçon en première en PDF.Ce cours de maths en première S sur le produit scalaire  est à télécharger gratuitement au format PDF et fait intervenir les notions suivantes : - définition du produit scalaire; - norme d'un vecteur; - cosinus et produit scalaire; - vecteurs orthogonaux; - bilinéarité du produit scalaire; - symétrie du…
Les dernières fiches mises à jour

  1. Les équations : cours de maths en 4ème avec leçon en quatrième en PDF.
  2. Volumes : cours de maths en 5ème avec leçon en cinquième en PDF.
  3. Probabilités : cours de maths en 5ème avec leçon en cinquième en PDF.
  4. Exercices de maths corrigés à télécharger en PDF.
  5. Cours de maths à télécharger en PDF au collège et lycée.
  6. Maths : cours et exercices corrigés en PDF de mathématiques.
  7. Angles : cours de maths en 5ème avec leçon en cinquième en PDF.
  8. Statistiques : cours de maths en 5ème avec leçon en cinquième en PDF.
  9. Proportionnalité et pourcentages : cours de maths en 5ème, leçon en PDF.
  10. Homothéties : cours de maths en 3ème avec leçon en PDF en troisième.


Chaîne Youtube

Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 072 523 fiches de cours et d'exercices téléchargées.
Rejoignez les 46 270 membres de Mathématiques Web, inscription gratuite.