exercices maths tnale

Suites numériques : exercices en terminale corrigés en PDF.

Une série d’exercices de maths en terminale S sur les suites numériques.

Cette fiche fait intervenir les notions suivantes :

  1. définition d’une suite;
  2. somme des termes d’une suite;
  3. convergence d’une suite numérique;
  4. comportement asymptotique d’une suite;
  5. étude suite et fonctions;
  6. suites récurrentes.

Exercice n° 1 :

u est la suite définie par u_0=0 et, pour tout nombre entier naturel n, u_{n+1}=\sqrt{u_n^2+1}.

Avec le tableur, on a obtenu ci-dessous les premières valeurs de u_n et u_n^2.

Tableau de valeurs d'une suite

  1. Conjecturer une expression de u_n en fonction de n.
  2. Valider cette conjecture par un raisonnement par récurrence.

Exercice n° 2 :

V est la suite définie par V_0=0 et pour tout nombre entier naturel n, V_{n+1}=V_n+2n+2.

Démontrer par récurrence que pour tout nombre entier naturel n, V_n=n(n+1).

Exercice n° 3 :

Montrer par récurrence que, pour tout entier naturel n, 2^n\geq\,\,\,\,n+1.

Exercice n° 4 :

Sur cette figure :

  • OA_0=1
  • A_0A_1=A_1A_2=...=2
  • les triangles OA_0A_1,OA_1A_2,... sont rectangles.

Suite numérique

Démontrer par récurrence, que pour tout nombre entier naturel n, OA_n=\sqrt{4n+1}.

Exercice n° 5 :

Etudier, en justifiant, la limite en l’infini de chacune des suites numériques suivantes :

1.\,u_n=3(2-0,9^n)\\2.\,v_n=1,01^n-5\\3.\,w_n=\frac{3+0,2^n}{0,9^n-5}\\4.\,t_n=\frac{4^n+5}{2\times  \,3^n}

Exercice n° 6 :

u est la suite géométrique de raison 0,8 et de premier terme u_1=-3.

  1. Pour tout nombre entier naturel n non nul, exprimer S_n=u_1+u_2+u_3+...+u_n en fonction de n.
  2. Etudier la limite de la suite \,(\,S_n\,\,).

Exercice n° 7 :

On considère la suite (u_n) définie par u_0=0,7 et pour tout n\in\,\mathbb{N},

u_{n+1}=\frac{3u_n}{1+2u_n}.

1)Soit f la fonction définie sur [0;+\infty[ par f(x)=\frac{3x}{1+2x}.

a)Etudier les variations de f sur [0;+\infty[.

b) En déduire que si x\in[0;1], alors f ‘ (x) \in[0;1].

2)Démontrer par récurrence que, pour tout entier naturel n, 0\leq\,\,u_n\leq\,\,1.

3)Déterminer le sens de variation de la suite (u_n).

Exercice n° 8 :

La suite (u_n) est définie par u_1=1 et pour tout n\in\,\mathbb{N}^*,

u_{n+1}=u_n+2n+1.

1)A l’aide de la calculatrice ou d’un tableur, déterminer les dix premiers

termes de la suite (u_n).

2)a)Quelle conjecture peut-on faire sur l’expression de u_n en fonction de n ?

b)Démontrer cette conjecture par récurrence.

Exercice n°9 :

Montrer par récurrence que, pour tout entier naturel n non nul,

\sum_{q=1}^{n}q^2=\frac{n(n+1)(2n+1)}{6}.

Exercice n° 10 :

Déterminer la limite de (u_n) définie sur \mathbb{N}^* en utilisant les théorèmes généraux.

1)u_n=(1-2n)(n^2+3).

2)u_n=\frac{3}{3+2n}.

3)u_n=4n-1+\frac{5}{\sqrt{n}}.

4)u_n=-n^2-5n+\frac{1}{n}

Exercice n°11 :

Soit la suite (u_n) définie par u_0=5 et, pour tout n\in\,\mathbb{N},

u_{n+1}=-\frac{1}{3}u_n+1.

Soit (v_n) la suite définie pour tout entier naturel n par :

v_n=4u_n-3.

1)Montrer que la suite (v_n) est géométrique de raison -\frac{1}{3}.

Préciser le premier terme.

2) Déterminer l’expression de v_n en fonction de n et en déduire que,

pour tout entier naturel n :

u_n=\frac{17}{4}\times  \,(-\frac{1}{3})^n+\frac{3}{4}.

3) Déterminer la limite de la suite (u_n).

Exercice n° 12 :

Etudier si les suites suivantes, définies sur \mathbb{N}, sont bornées.

1)u_n=(\frac{1}{3})^n-8.

2)u_n=5sin(5n+1)-3.

3)u_n=cos(n^2)-n.

3.7/5 - (615 votes)
Télécharger puis imprimer cette fiche en PDF.

Télécharger ou imprimer cette fiche «suites numériques : exercices en terminale corrigés en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.


Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 166 410 fiches de cours et d'exercices téléchargées.