exercices maths terminale

Suites : Exercices Maths Terminale S Corrigés en PDF.

Une série d’exercices de mats en terminale S sur les suites numériques.

Cette fiche fait intervenir les notions suivantes :

  • définition d’une suite;
  • somme des termes d’une suite;
  • convergence d’une suite numérique;
  • comportement asymptotique d’une suite;
  • étude suite et fonctions;
  • suites récurrentes.

Exercice n° 1 :

u est la suite définie par u_0=0 et, pour tout nombre entier naturel n, u_{n+1}=\sqrt{u_n^2+1}.

Avec le tableur, on a obtenu ci-dessous les premières valeurs de u_n et u_n^2.

suites

  1. Conjecturer une expression de u_n en fonction de n.
  2. Valider cette conjecture par un raisonnement par récurrence.

Exercice n° 2 :

V est la suite définie par V_0=0 et pour tout nombre entier naturel n, V_{n+1}=V_n+2n+2.

Démontrer par récurrence que pour tout nombre entier naturel n, V_n=n(n+1).

Exercice n° 3 :

Montrer par récurrence que, pour tout entier naturel n, 2^n\geq\, \, n+1.

Exercice n° 4 :

Sur cette figure :

  • OA_0=1
  • A_0A_1=A_1A_2=...=2
  • les triangles OA_0A_1,OA_1A_2,... sont rectangles.

Exercices suites

Démontrer par récurrence, que pour tout nombre entier naturel n, OA_n=\sqrt{4n+1}.

Exercice n° 5 :

Etudier, en justifiant, la limite en l’infini de chacune des suites numériques suivantes :

1.\,u_n=3(2-0,9^n)\\2.\,v_n=1,01^n-5\\3.\,w_n=\frac{3+0,2^n}{0,9^n-5}\\4.\,t_n=\frac{4^n+5}{2\times   3^n}

Exercice n° 6 :

u est la suite géométrique de raison 0,8 et de premier terme u_1=-3.

  1. Pour tout nombre entier naturel n non nul, exprimer S_n=u_1+u_2+u_3+...+u_n en fonction de n.
  2. Etudier la limite de la suite  ( S_n  ).

Exercice n° 7 :

On considère la suite (u_n) définie par u_0=0,7 et pour tout n\in \mathbb{N},

u_{n+1}=\frac{3u_n}{1+2u_n}.

1)Soit f la fonction définie sur [0;+\infty[ par f(x)=\frac{3x}{1+2x}.

a)Etudier les variations de f sur [0;+\infty[.

b) En déduire que si x\in[0;1], alors f ‘ (x) \in[0;1].

2)Démontrer par récurrence que, pour tout entier naturel n, 0\leq\, u_n\leq\, 1.

3)Déterminer le sens de variation de la suite (u_n).

Exercice n° 8 :

La suite (u_n) est définie par u_1=1 et pour tout n\in \mathbb{N}^*,

u_{n+1}=u_n+2n+1.

1)A l’aide de la calculatrice ou d’un tableur, déterminer les dix premiers

termes de la suite (u_n).

2)a)Quelle conjecture peut-on faire sur l’expression de u_n en fonction de n ?

b)Démontrer cette conjecture par récurrence.

Exercice n°9 :

Montrer par récurrence que, pour tout entier naturel n non nul,

\sum_{q=1}^{n}q^2=\frac{n(n+1)(2n+1)}{6}.

Exercice n° 10 :

Déterminer la limite de (u_n) définie sur \mathbb{N}^* en utilisant les théorèmes généraux.

1)u_n=(1-2n)(n^2+3).

2)u_n=\frac{3}{3+2n}.

3)u_n=4n-1+\frac{5}{\sqrt{n}}.

4)u_n=-n^2-5n+\frac{1}{n}

Exercice n°11 :

Soit la suite (u_n) définie par u_0=5 et, pour tout n\in \mathbb{N},

u_{n+1}=-\frac{1}{3}u_n+1.

Soit (v_n) la suite définie pour tout entier naturel n par :

v_n=4u_n-3.

1)Montrer que la suite (v_n) est géométrique de raison -\frac{1}{3}.

Préciser le premier terme.

2) Déterminer l’expression de v_n en fonction de n et en déduire que,

pour tout entier naturel n :

u_n=\frac{17}{4}\times   (-\frac{1}{3})^n+\frac{3}{4}.

3) Déterminer la limite de la suite (u_n).

Exercice n° 12 :

Etudier si les suites suivantes, définies sur \mathbb{N}, sont bornées.

1)u_n=(\frac{1}{3})^n-8.

2)u_n=5sin(5n+1)-3.

3)u_n=cos(n^2)-n.


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «suites : Exercices Maths Terminale S Corrigés en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.


Télécharger nos applications gratuites Mathématiques Web avec tous les cours,exercices corrigés.

Application Mathématiques Web sur Google Play Store. Application Mathématiques Web sur Apple Store.

.

Des cours et exercices corrigés en terminale en vidéos

D'autres fiches que vous devriez consulter
Chaîne Youtube

Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 1 894 721 fiches de cours et d'exercices téléchargées.
Rejoignez les 43 140 membres de Mathématiques Web, inscription gratuite.

Mathématiques Web

GRATUIT
VOIR