Nombres complexes : Cours Maths Terminale S avec leçon en PDF.

cours maths terminale

Un cours de maths en terminale S sur les nombres complexes.

Ce cours de maths fait intervenir les notions suivantes :

  • définition du nombre complexe;
  • forme algébrique;
  • forme géométrique;
  • formule d’Euler;
  • formule de Moivre;
  • équations complexes;
  • représentation géométrique d’un nombre complexe;
  • partie réelle et imaginaire d’un nombre complexe;
  • opérations sur les nombres complexes.

Ce cours de maths sur les nombres complexes, rédigé par un enseignant de l’éducation nationale, est à télécharger gratuitement au format PDF.

I.Forme algébrique d’un nombre complexe

Théorème et définition :

Il existe un ensemble de nombres noté \mathbb{C}, dont les éléments sont appelés les nombres complexes, tel que :

  • \mathbb{C} contient l’ensemble \mathbb{R} des nombres réels;
  • les règles de calculs dans \mathbb{C} sont les mêmes que dans \mathbb{R};
  • \mathbb{C} contient un élément noté i tel que i^2=-1;
  • tout nombre complexe z peut s’écrire de manière unique sous la forme z=x+iy avec x et y deux nombres réels (cette écriture s’appelle l’écriture algébrique du nombre complexe z).Le nombre x est appelé partie réel (notée Re(z)) du nombre z et le nombre y est appelé partie imaginaire (notée Im(z)) du nombre complexe z.

ensembles nombres

Exemple :

Le nombre z=\sqrt{3}+2i est un nombre complexe.

\sqrt{3} est sa partie réelle et 2 est sa partie imaginaire.

Propriétés :
  • z est un nombre réel si et seulement si Im(z)=0.
  • z est un imaginaire pur si et seulement si Re(z)=0.

II.Conjugué d’un nombre complexe

Définition :

On considère z un nombre complexe dont la forme algébrique est z=x+iy avec x et y deux nombres réels.On appelle conjugué du nombre z, le nombre complexe, noté \overline{z}, tel que \overline{z}=x-iy.

Exemple :

\overline{1+3i}=1-3i  et \overline{2-5i}=2+5i.

Propriétés :

On considère deux nombres complexes z et z'.Nous avons les propriétés suivantes :

  • \overline{\overline{z}}=z
  • \overline{z+z'}=\overline{z}+\overline{z'}
  • \overline{(\frac{1}{z})}=\frac{1}{\overline{z}} avec z\neq 0
  • z\in \mathbb{R}\Leftrightarrow \overline{z}=z
  • z est un imaginaire pur \Leftrightarrow \overline{z}=-z
  • \overline{zz'}=\overline{z}\overline{z'}
  • \overline{(\frac{z}{z'})}=\frac{\overline{z}}{\overline{z'}} avec z'\neq 0
  • \overline{(z^n)}=(\overline{z}) ^n avec n\in \mathbb{N}
  • \overline{(kz)}=k \overline{z} avec k\in \mathbb{R}

III.Représentation graphique des nombres complexes

1.Affixe d’un point

Définition :

On considère le plan complexe muni d’un repère orthonormé direct (O,\vec{u},\vec{v})

On associe à tout nombre complexe z=x+iy , on associe le point M(x;y).

M est appelé le point image de z et z est appelé l’affixe du point M dans le repère orthonormé direct (O,\vec{u},\vec{v}). On note M(z) qui se lit le point M d’affixe z.

Représentation graphique nombres complexes

Exemple :

Le point M d’affixe z=3+i  a pour coordonnées M(3,1).

Le point N d’affixe z=-1-i  a pour coordonnées M(-1,-1).

2.Affixe d’un vecteur

Définition :

A tout nombre complexe z affixe du point M(x,y), on associe le vecteur \vec{w}=\vec{OM} tel que \vec{ w}\binom\,{x}{y}.et on note \vec{ w}(z), le vecteur \vec{ w} d’affixe z.

Exemples:

Le vecteur \vec{OM} d’affixe z=1+2i a pour coordonnées .

Le vecteur \vec{t} d’affixe  1-3i a pour coordonnées .

affixe vecteur

Propriétés :

On considère deux vecteurs \vec{w} et \vec{w'} d’affixes respectives z etz'.Le vecteur \vec{w}+\vec{w'} a pour affixe z+z'.

Le vecteur k\vec{w} a pour affixe kz avec k\in \mathbb{R}.

3.Les équations du second degré dans \mathbb{C}

Propriété :

On considère un nombre réel a.

  • Si a>0, les solutions sont z=\sqrt{a} et z=-\sqrt{a};
  • Si a<0, les solutions sont z=i\sqrt{-a} et z=-\sqrt{-a};
  • Si a=0, la solution est z=0.

Exemple :

L’équation z^2=-4 admet comme solutions dans \mathbb{C} : z=2i et z=-2i.

4.Les équations du type az²+bz+c=0

Propriété :

On considère des nombres réels a,b et c avec a\neq 0.On considère dans \mathbb{C} , l’équation (E) :  az^2+bz+c=0 de discriminant  \Delta =b^2-4ac.

  • Si \Delta>0, les solutions sont z_1=\frac{-b+\sqrt{ \Delta }}{2a}  et z_2=\frac{-b-\sqrt{ \Delta }}{2a};
  • Si \Delta<0, les solutions sont z_1=\frac{-b+i\sqrt{- \Delta }}{2a}  et z_2=\frac{-b-i\sqrt{ -\Delta }}{2a};
  • Si \Delta=0, la solution est z =\frac{ \sqrt{ \Delta }}{2a}.

Exemple :

Résoudre dans \mathbb{C}, l’équation (E) : z^2+4z+5=0.

\Delta =b^2-4ac=4^2-4\times   1\times   5=16-20=-4<0.

Les solutions sont :

z_1=\frac{-b+i\sqrt{- \Delta }}{2a}=\frac{-4+i\sqrt{4 }}{2}=\frac{-4+2i}{2}=-2+i

et z_2=\frac{-b-i\sqrt{- \Delta }}{2a}=\frac{-4-i\sqrt{4 }}{2}=\frac{-4-2i}{2}=-2-i.

5.Factorisation d’un trinôme du second degré

Propriété:

On considère des nombres réels a,b et c avec a\neq 0.Pour tout nombre z\in \mathbb{C}, on pose P(z)=az^2+bz+c.

On note z_1 et z_2 les deux solutions de P(z)=0 dans  (avec éventuellement z_1= z_2 lorsque \Delta=0).

On a pour tout z\in \mathbb{C}, P(z)=a(z-z_1)(z-z_2).

Exemple :

Reprenons l’exemple précédent, P(z)=z^2+4z+5= (z+2-i)(z+2+i).

3.2/5 - (10 votes)



Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «nombres complexes : Cours Maths Terminale S avec leçon en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.


Télécharger nos applications gratuites Mathématiques Web avec tous les cours,exercices corrigés.

Application Mathématiques Web sur Google Play Store. Application Mathématiques Web sur Apple Store.


D'autres articles analogues à nombres complexes : Cours Maths Terminale S avec leçon en PDF.

Mathématique web est un site de mathématiques destinés aux élèves et professeurs du collège (6ème, 5ème, 4ème et 3ème) au lycée (2de, 1ère et terminale. Vous trouverez sur ce site de nombreuses ressources vous permettant de vous familiariser avec les mathématiques. Toutes les cours de maths sont rédigés par des professeurs et sont conformes aux programmes officiels de l'éducation nationale.
Comment réussir en maths ?
Une question régulièrement posée, comme le dit le dicton rien ne tombe du ciel. Afin de combler vos lacunes en mathématiques et d'envisager une progression constante tout au long de l'année scolaire et analogues à nombres complexes : Cours Maths Terminale S avec leçon en PDF..
Pour celà, il faudra maitriser le contenu de votre leçon (définitions, théorèmes et propriétés) et vous exercer régulièrement sur les milliers d'exercices de maths disponibles sur notre site et vous pourrez également, consulter le corrigé de chaque exercice afin de repérér vos différentes erreurs et par conséquent, développer des compétences en maths.
De nombreux exercices de maths pour tous les niveaux similaires à ceux de votre manuel scolaire ainsi que, toutes les leçons du collège au lycée rédigées par des enseignants titutaires de l'éducation nationale similaires à nombres complexes : Cours Maths Terminale S avec leçon en PDF..
En complément, vous trouverez de nombreux exercices de programmation et d'algorithme réalisés avec le programme scratch ainsi que de nombreux sujets de contrôles de maths afin de vous préparer le jour d'un devoir surveillé en classe.
Toutes les fiches ( cours et exercices) sont à télécharger gratuitement en PDF afin de pouvoir les imprimer librement sur des supports similaires à ceux de votre manuel scolaire.

  • 81
    Limite de fonctions et opérations sur les limites : cours de maths en terminale SLes tableaux ci-dessous résument les résultats à connaître. Ces tableaux sont valables dans les trois situations étudiées: Lorsque la variable . Lorsque la variable . Lorsque la variable où a R. Mais il va de soi que, pour les deux fonctions f et g concernées, les limites sont prises au…
  • 80
    Probabilités : cours de maths en terminale S en PDFI.Introduction aux probabilités La théorie des probabilités consiste à mathématiser le hasard, c'est à dire les phénomènes aléatoires et donner un sens précis aux phrases du type: "A pile ou face, j'ai une chance sur deux d'obtenir pile." "Au Loto, il est nettement plus probable de perdre, que de gagner…
  • 79
    Limite de suites et fonctions : cours de maths en terminale S en PDFUn cours de maths en terminale S à télécharger gratuitement au format PDF. Une étude comparative des suites numériques et des fonctions ainsi que l'étude de la limite d'une suite et d'une fnction en l'infini ou en une valeur finie. I.Suites et fonctions: étude comparative Remarque: Les suites numériques étant…
  • 78
    Suites numériques : Cours Maths Terminale S et leçon en PDF.Un cours de maths sur les suite numériques en terminale S. Cette leçon sur les suites numériques fait intervenir les notions suivantes : définition d'une suite; suite croissante, décroissante et monotonie d'une suite; suite convergente et divergente; monotonie d'une suite; limite d'une suite numérique; les suites adjacentes. Ce cours de…
  • 78
    Intégrales et primitives : cours de maths en terminale S en PDF.Les intégrales et les primitives avec un cours de maths en terminale S à télécharger gratuitement en PDF. Nous verrons dans cette leçon la définition et les différentes propriétés de l'intégrale ainsi que la signification géométriques avec les aires. Les différentes façons de calculer une intégrale à l'aide de la…
Les dernières fiches mises à jour

  1. Multiplication : cours de maths en 6ème en PDF.
  2. Addition et soustraction: cours de maths en 6ème en PDF.
  3. Les nombres décimaux : cours de maths en 6ème en PDF.
  4. Les nombres entiers : cours de maths en 6ème en PDF.
  5. Corrigé des exercices sur la somme des angles
  6. Logarithme népérien : Cours Maths Terminale S avec leçon en PDF.
  7. Convexité : Cours Maths Terminale S avec leçon en PDF.
  8. Fonction exponentielle : Cours Maths 1ère S et leçon en première en PDF.
  9. Priorités opérations : cours de maths en 5ème avec leçon en PDF.
  10. Fonctions : exercices de maths corrigés en PDF en 1ère S


Chaîne Youtube

Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 1 935 476 fiches de cours et d'exercices téléchargées.
Rejoignez les 43 770 membres de Mathématiques Web, inscription gratuite.

A propos de webmaster 274 Articles
webmaster de ce site Mathématiques Web qui est géré par une équipe volontaire d'enseignants de maths du collège au lycée.Notre but est de mettre en ligne, gratuitement, le maximum de ressources et fiche de maths afin de permettre aux élèves de réviser sur des exercices, contrôles et sujets du brevet et du baccalauréat mais également de fournir aux professeurs des ressources qu'ils peuvent utiliser librement en classe.