Nombres complexes : cours de maths en terminale S avec leçon en PDF.

cours maths terminale

Un cours de maths en terminale S sur les nombres complexes.

Cette leçon fait intervenir les notions suivantes :

  • définition du nombre complexe;
  • forme algébrique;
  • forme géométrique;
  • formule d’Euler;
  • formule de Moivre;
  • équations complexes;
  • représentation géométrique d’un nombre complexe;
  • partie réelle et imaginaire d’un nombre complexe;
  • opérations sur les nombres complexes.

I.Forme algébrique d’un nombre complexe

Théorème et définition :

Il existe un ensemble de nombres noté \mathbb{C}, dont les éléments sont appelés les nombres complexes, tel que :

  • \mathbb{C} contient l’ensemble \mathbb{R} des nombres réels;
  • les règles de calculs dans \mathbb{C} sont les mêmes que dans \mathbb{R};
  • \mathbb{C} contient un élément noté i tel que i^2=-1;
  • tout nombre complexe z peut s’écrire de manière unique sous la forme z=x+iy avec x et y deux nombres réels (cette écriture s’appelle l’écriture algébrique du nombre complexe z).Le nombre x est appelé partie réel (notée Re(z)) du nombre z et le nombre y est appelé partie imaginaire (notée Im(z)) du nombre complexe z.

ensembles nombres

Exemple :

Le nombre z=\sqrt{3}+2i est un nombre complexe.

\sqrt{3} est sa partie réelle et 2 est sa partie imaginaire.

Propriétés :
  • z est un nombre réel si et seulement si Im(z)=0.
  • z est un imaginaire pur si et seulement si Re(z)=0.

II.Conjugué d’un nombre complexe

Définition :

On considère z un nombre complexe dont la forme algébrique est z=x+iy avec x et y deux nombres réels.On appelle conjugué du nombre z, le nombre complexe, noté \overline{z}, tel que \overline{z}=x-iy.

Exemple :

\overline{1+3i}=1-3i  et \overline{2-5i}=2+5i.

Propriétés :

On considère deux nombres complexes z et z'.Nous avons les propriétés suivantes :

  • \overline{\overline{z}}=z
  • \overline{z+z'}=\overline{z}+\overline{z'}
  • \overline{(\frac{1}{z})}=\frac{1}{\overline{z}} avec z\neq 0
  • z\in \mathbb{R}\Leftrightarrow \overline{z}=z
  • z est un imaginaire pur \Leftrightarrow \overline{z}=-z
  • \overline{zz'}=\overline{z}\overline{z'}
  • \overline{(\frac{z}{z'})}=\frac{\overline{z}}{\overline{z'}} avec z'\neq 0
  • \overline{(z^n)}=(\overline{z}) ^n avec n\in \mathbb{N}
  • \overline{(kz)}=k \overline{z} avec k\in \mathbb{R}

III.Représentation graphique des nombres complexes

1. Affixe d’un point

Définition :

On considère le plan complexe muni d’un repère orthonormé direct (O,\vec{u},\vec{v})

On associe à tout nombre complexe z=x+iy , on associe le point M(x;y).

M est appelé le point image de z et z est appelé l’affixe du point M dans le repère orthonormé direct (O,\vec{u},\vec{v}). On note M(z) qui se lit le point M d’affixe z.

Représentation graphique nombres complexes

Exemple :

Le point M d’affixe z=3+i  a pour coordonnées M(3,1).

Le point N d’affixe z=-1-i  a pour coordonnées M(-1,-1).

2.Affixe d’un vecteur

Définition :

A tout nombre complexe z affixe du point M(x,y), on associe le vecteur \vec{w}=\vec{OM} tel que \vec{w}(x;y).et on note \vec{ w}(z), le vecteur \vec{ w} d’affixe z.

Exemples:

Le vecteur \vec{OM} d’affixe z=1+2i a pour coordonnées .

Le vecteur \vec{t} d’affixe  1-3i a pour coordonnées .

affixe vecteur

Propriétés :

On considère deux vecteurs \vec{w} et \vec{w'} d’affixes respectives z etz'.Le vecteur \vec{w}+\vec{w'} a pour affixe z+z'.

Le vecteur k\vec{w} a pour affixe kz avec k\in \mathbb{R}.

3.Les équations du second degré dans \mathbb{C}

Propriété :

On considère un nombre réel a.

  • Si a>0, les solutions sont z=\sqrt{a} et z=-\sqrt{a};
  • Si a<0, les solutions sont z=i\sqrt{-a} et z=-\sqrt{-a};
  • Si a=0, la solution est z=0.

Exemple :

L’équation z^2=-4 admet comme solutions dans \mathbb{C} : z=2i et z=-2i.

4.Les équations du type az²+bz+c=0

Propriété :

On considère des nombres réels a,b et c avec a\neq 0.On considère dans \mathbb{C} , l’équation (E) :  az^2+bz+c=0 de discriminant  \Delta =b^2-4ac.

  • Si \Delta>0, les solutions sont z_1=\frac{-b+\sqrt{ \Delta }}{2a}  et z_2=\frac{-b-\sqrt{ \Delta }}{2a};
  • Si \Delta<0, les solutions sont z_1=\frac{-b+i\sqrt{- \Delta }}{2a}  et z_2=\frac{-b-i\sqrt{ -\Delta }}{2a};
  • Si \Delta=0, la solution est z =\frac{ \sqrt{ \Delta }}{2a}.

Exemple :

Résoudre dans \mathbb{C}, l’équation (E) : z^2+4z+5=0.

\Delta =b^2-4ac=4^2-4\times   1\times   5=16-20=-4<0.

Les solutions sont :

z_1=\frac{-b+i\sqrt{- \Delta }}{2a}=\frac{-4+i\sqrt{4 }}{2}=\frac{-4+2i}{2}=-2+i

et z_2=\frac{-b-i\sqrt{- \Delta }}{2a}=\frac{-4-i\sqrt{4 }}{2}=\frac{-4-2i}{2}=-2-i.

5.Factorisation d’un trinôme du second degré

Propriété:

On considère des nombres réels a,b et c avec a\neq 0.Pour tout nombre z\in \mathbb{C}, on pose P(z)=az^2+bz+c.

On note z_1 et z_2 les deux solutions de P(z)=0 dans  (avec éventuellement z_1= z_2 lorsque \Delta=0).

On a pour tout z\in \mathbb{C}, P(z)=a(z-z_1)(z-z_2).

Exemple :

Reprenons l’exemple précédent, P(z)=z^2+4z+5= (z+2-i)(z+2+i).

3.6/5 - (13 votes)


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «nombres complexes : cours de maths en terminale S avec leçon en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.


Télécharger nos applications gratuites Mathématiques Web avec tous les cours,exercices corrigés.

Application Mathématiques Web sur Google Play Store. Application Mathématiques Web sur Apple Store.


D'autres articles analogues à nombres complexes : cours de maths en terminale S avec leçon en PDF.

Mathématique web est un site de mathématiques destinés aux élèves et professeurs du collège (6ème, 5ème, 4ème et 3ème) au lycée (2de, 1ère et terminale. Vous trouverez sur ce site de nombreuses ressources vous permettant de vous familiariser avec les mathématiques. Toutes les cours et exercices de maths similaires à nombres complexes : cours de maths en terminale S avec leçon en PDF. sont rédigés par des professeurs et sont conformes aux programmes officiels de l'éducation nationale.

  • 81
    Limite de fonctions et opérations sur les limites : cours de maths en terminale SLes tableaux ci-dessous résument les résultats à connaître. Ces tableaux sont valables dans les trois situations étudiées: Lorsque la variable . Lorsque la variable . Lorsque la variable où a R. Mais il va de soi que, pour les deux fonctions f et g concernées, les limites sont prises au…
  • 80
    Logarithme népérien : cours de maths en terminale S avec leçon en PDF.I. Fonction logarithme népérien, fonction réciproque de la fonction exponentielle. Propriétés : la fonction exponentielle. La fonction exponentielle est continue et strictement croissante sur . Nous avons et . L'équation , avec , admet alors une unique solution dans , d'après le théorème des valeurs intermédiaires. Définition : fonction logarithme…
  • 79
    Limite de suites et fonctions : cours de maths en terminale S en PDFUn cours de maths en terminale S à télécharger gratuitement au format PDF. Une étude comparative des suites numériques et des fonctions ainsi que l'étude de la limite d'une suite et d'une fonction en l'infini ou en une valeur finie. I. Suites et fonctions: étude comparative. Remarque : Les suites…
  • 78
    Intégrales et primitives : cours de maths en terminale S en PDF.Les intégrales et les primitives avec un cours de maths en terminale S à télécharger gratuitement en PDF. Nous verrons dans cette leçon la définition et les différentes propriétés de l'intégrale ainsi que la signification géométriques avec les aires. Les différentes façons de calculer une intégrale à l'aide de la…
  • 78
    Suites numériques : cours de maths en terminale S et leçon en PDF.Cette leçon sur les suites numériques fait intervenir les notions suivantes : définition d'une suite; suite croissante, décroissante et monotonie d'une suite; suite convergente et divergente; monotonie d'une suite; limite d'une suite numérique; les suites adjacentes. I.Les suites numériques 1.Définition et vocabulaire Définition : Une suite numérique est une fonction…
Les dernières fiches mises à jour

  1. Les équations : cours de maths en 4ème avec leçon en quatrième en PDF.
  2. Volumes : cours de maths en 5ème avec leçon en cinquième en PDF.
  3. Probabilités : cours de maths en 5ème avec leçon en cinquième en PDF.
  4. Exercices de maths corrigés à télécharger en PDF.
  5. Cours de maths à télécharger en PDF au collège et lycée.
  6. Maths : cours et exercices corrigés en PDF de mathématiques.
  7. Angles : cours de maths en 5ème avec leçon en cinquième en PDF.
  8. Statistiques : cours de maths en 5ème avec leçon en cinquième en PDF.
  9. Proportionnalité et pourcentages : cours de maths en 5ème, leçon en PDF.
  10. Homothéties : cours de maths en 3ème avec leçon en PDF en troisième.


Chaîne Youtube

Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 072 519 fiches de cours et d'exercices téléchargées.
Rejoignez les 46 270 membres de Mathématiques Web, inscription gratuite.