exercices maths tnale

Produit scalaire : exercices de maths en terminale corrigés en PDF.

Une série d’exercices corrigés de maths en terminale S sur le produit scalaire .

Cette fiche fait intervenir les notions suivantes :

  1. définition du produit scalaire;
  2. propriété de bilinéarité du produit scalaire;
  3. symétrie du produit scalaire;
  4. produit scalaire dans le plan et l’espace.

Le produit scalaire est un outil très utile en géométrie dans l’espace. Il permet de calculer la valeur d’un angle entre deux vecteurs.

Exercice n° 1 :

Dans un repère orthonormé de l’espace le vecteur \vec{u} a pour coordonnées (1;2;4).

Calculer ||\vec{u}||.

Exercice n° 2 :

Dans un repère orthonormé de l’espace, A et B sont les points de coordonnées respectives

(3;1;0) et (5;0;1).

Calculer ||\vec{AB}||.

Exercice n° 3 :

\vec{u} et \vec{v} sont deux vecteurs de l’espace tels que ||\vec{u}||=1, ||\vec{v}||=2 et ||\vec{v}-\vec{u}||=\sqrt{5}.

Calculer \vec{u}.\vec{v}.

Exercice n° 4 :

\vec{AB} et \vec{AC} sont deux vecteurs de l’espace tels que AB = 5, AC = 8 et \vec{BAC}=60\,^{\circ}.

Calculer \vec{AB}.\vec{AC}.

Exercice n° 5 :

ABCDEFGH est un cube de côté a.

Les points M et N sont les centres des faces BCGF et EFGH.

a) Vérifier que AM^2=\frac{3}{2}a^2.

b) Calculer AN^2 et MN^2.

c) En déduire la valeur du produit scalaire \vec{AM}.\vec{AN}.

Produit scalaire dans l'espace

Exercice n° 6 :

Dans un repère orthonormé de l’espace, on donne les coordonnées des vecteurs \vec{u} et \vec{v}.

Calculer \vec{u}.\vec{v}.

a)\\,\vec{u}(2;3;-1)\vec{v}(1;0;2)\\b)\vec{u}(0;-2;5)\vec{v}(6;1;1)\\c)\vec{u}(1;-1;2)\vec{v}(3;-1;1)

Exercice n° 7 :

Dans un repère orthonormé, on considère les points A(1;-1;0), B(-2,2,6), C(3,1,- 8)

et le vecteur \vec{n}(3,1,1).

1.Vérifier que les points A,B,C ne sont pas alignés.

2.a) Démontrer que le vecteur \vec{n} est normal au plan ABC.

b) Déterminer une équation cartésienne du plan (ABC).

Exercice n° 8 :

Dans un repère orthonormé, A et B sont les points de coordonnées respectives

(3,2,0) et (5,1,-1) .

\rho est le plan passant par A et orthogonal à la droite (AB).

a. Donner un vecteur normal au plan \rho.

b. En déduire une équation cartésienne du plan \rho.

Exercice n° 9 :

Soit les points de l’espace A(-4;4;0), B(4;0;-4) et C(1;1;1)

1. Déterminer une représentation paramétrique de la droite (AB).

2. Déterminer la distance entre le point C et son projeté orthogonal H sur la droite (AB).

H est tel que les droites (CH) et (AB) sont perpendiculaires.
Exercice n° 10 :

Soit P le plan passant par le point A (4; 8;-4) et dirigé par les vecteurs \vec{u}(2 ; -1 ; 3) et \vec{v}(4; 1; -3).
1. Démontrer que \vec{n} (0 ; 3 ; 1) est un vecteur normal au plan P.
2. Déterminer un vecteur normal \vec{n_1} au plan P, tel que la troisième coordonnée de \vec{n_1}, soit égale 7.
3. Déterminer un vecteur normal \vec{n_2} du plan P, tel que la deuxième coordonnée de \vec{n_2}, soit égale – 1.
4. Est-il possible de trouver un vecteur normal au plan P dont la première coordonnée est égale à 4 ?
Exercice n° 11 :

Soit (d) la droite dont une représentation paramétrique est :

\{\begin{matrix} x=3-2t\\ y=1+5t\\z=-7+6t \end{matrix}.   avec t\in \mathbb{R}.
Déterminer une équation du plan P passant par le point A(8;-5 ;3) et perpendiculaire à la droite (d).
Exercice n° 12 :

ABCDEFGH est un cube.

Le point I est le milieu de [AB] et le point J est le milieu de [DH].
On se place dans le  repère orthonormé (A ; \vec{AB}, \vec{AD}, \vec{AE}).
1. Déterminer les coordonnées des points I, Jet G.
2. Justifier que les points I, J et G définissent un plan.
3. a. Déterminer des réels a, b et c tels que \vec{n}(a ; b ; c) soit un vecteur normal au plan (IJG).
b. En déduire une équation du plan (IJG).

Exercice n° 13 :

Soit P le plan d’équation 2x\,-\,5y\,+3z-7=0.
Les droites (d_1) et (d_2) sont définies par une représentation paramétrique donnée ci-dessous :

(d_1):\{\begin{matrix} x=5+4t \\ y=2+t\\z=9-t \end{matrix}.    et (d_2):\{\begin{matrix} x=2+3t \\ y=2t\\z=1+5t \end{matrix}.    avec t\in \mathbb{R}.

1. Le plan P et la droite (d1) sont-ils sécants ?
2. Déterminer l’intersection du plan P et de la droite (d2).

Exercice n° 14 :

On considère les points A(0;4;1), B(1;3;0), C(2;-1;-2) et D(7;- 1;4).
1. Démontrer que les points A, B et C ne sont pas alignés.
2. Soit \Delta la droite passant par le point D et de vecteur directeur \vec{u}(2 ; —1 ; 3).
a. Démontrer que la droite \Delta est orthogonale au plan (ABC).
b. En déduire une équation cartésienne du plan (ABC).
c. Déterminer une représentation paramétrique de la droite \Delta.
d. Déterminer les coordonnées du point H, intersection de la droite \Delta et du plan (ABC).
3. Soit P_1 le plan d’équation x + y + z = 0 et P_2 le plan d’équation x +4y +2=0.
a. Démontrer que les plans P_1 et P_2  sont sécants.
b. Vérifier que la droite (d), intersection des plans P_1 et P_2 a pour représentation paramétrique

\{\begin{matrix} x=-4t-2 \\ y=t\\z=3t+2 \end{matrix}.

c. La droite (d) et le plan (ABC) sont-ils sécants ou parallèles ?

Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «produit scalaire : exercices de maths en terminale corrigés en PDF.» au format PDF afin de pouvoir travailler en totale autonomie.


D'autres fiches dans la section Exercices de maths en terminale


Télécharger nos applications gratuites Mathématiques Web avec tous les cours,exercices corrigés.

Application Mathématiques Web sur Google Play Store.    Application Mathématiques Web sur Apple Store.    Suivez-nous sur YouTube.


D'autres articles analogues à produit scalaire : exercices de maths en terminale corrigés en PDF.
  • 82
    Probabilités : exercices de maths en terminale corrigés en PDF.Des exercices  de maths sur les probabilités en terminale. Cette fiche est à consulter en ligne ou en téléchargement gratuit au format pdf. Vous retrouverez, dans ces exercices sur les probabilités, tous les savoirs-faire exigibles dans les programmes officiels de l'éducation nationale. Les probabilités sont un outil important pour comprendre…
  • 81
    Intégrales : exercices de maths en terminale corrigés en PDF.Des exercices corrigés de maths sur les intégrales et le calcul de primitive en terminale à télécharger gratuitement au format pdf. Ces exercices font intervenir le calcul et la détermination d'une primitive ainsi que toutes les propriétés de l'opérateur intégral. Ces fiche fait intervenir les notions suivantes :  primitives; linéarité…
  • 79
    Logarithme : exercices de maths en terminale corrigés en PDF.Logarithmes avec des exercices corrigés de maths en terminale faisant intervenir les propriétés des logarithmes népériens et les fonctions. Ces exercices corrigés sur les logarithmes font intervenir les notions suivantes : définition du logarithme; équations fonctionnelles; formules algébriques sur les logarithmes; limites et fonctions logarithmes.   Exercice n° 1 :…
Les dernières fiches mises à jour

Voici la liste des derniers cours et exercices ajoutés au site ou mis à jour et similaire à produit scalaire : exercices de maths en terminale corrigés en PDF. .

  1. Cours de maths en 6ème à télécharger en PDF ou à imprimer.
  2. Contrôles de maths : sujets de devoirs surveillés du collège au lycée
  3. Cours de maths à télécharger en PDF au collège et lycée.
  4. astra
  5. Probabilités conditionnelles : exercices de maths en 1ère corrigés en PDF.


Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 118 694 fiches de cours et d'exercices téléchargées.

Copyright © 2008 - 2023 Mathématiques Web Tous droits réservés | Mentions légales | Signaler une Erreur | Contact

.
Retour en haut
Mathématiques Web

GRATUIT
VOIR