Numerical sequences: corrected high school math exercises in PDF.

A series of math exercises for the final year of high school on numerical sequences.

This sheet involves the following concepts:

  1. definition of a sequence;
  2. sum of the terms of a sequence;
  3. convergence of a numerical sequence;
  4. asymptotic behavior of a sequence;
  5. study suite and functions;
  6. recurring suites.

Exercise #1:

u is the sequence defined by u_0=0 and, for any natural number n, u_{n+1}=\sqrt{u_n^2+1}.

With the spreadsheet, the first values of u_n and u_n^2 were obtained below.

Table of values of a sequence

  1. Conjecture an expression for u_n as a function of n.
  2. Validate this conjecture by reasoning by recurrence.

Exercise #2:

V is the sequence defined by V_0=0 and for any natural number n, V_{n+1}=V_n+2n+2.

Prove by recurrence that for any natural number n, V_n=n(n+1).

Exercise #3:

Show by recurrence that, for any natural number n, 2^n\geq\,\,\,\,n+1.

Exercise #4:

In this figure:

  • OA_0=1
  • A_0A_1=A_1A_2=...=2
  • the triangles OA_0A_1,OA_1A_2,... are rectangles.

Digital Suite

Prove by recurrence that for any natural number n, OA_n=\sqrt{4n+1}.

Exercise #5:

Study, justifying, the limit in infinity of each of the following numerical series:

1.\,u_n=3(2-0,9^n)\\2.\,v_n=1,01^n-5\\3.\,w_n=\frac{3+0,2^n}{0,9^n-5}\\4.\,t_n=\frac{4^n+5}{2\times  \,3^n}

Exercise #6:

u is the geometric sequence of reason 0.8 and first term u_1=-3.

  1. For any non-zero natural number n, express S_n=u_1+u_2+u_3+...+u_n as a function of n.
  2. Study the limit of the sequence \,(\,S_n\,\,).

Exercise #7:

Consider the sequence (u_n) defined by u_0=0,7 and for all n\in\,\mathbb{N},

u_{n+1}=\frac{3u_n}{1+2u_n}.

1)Let f be the function defined on %5B0;+\infty%5B by f(x)=\frac{3x}{1+2x}.

a) Study the variations of f on %5B0;+\infty%5B.

b) Deduce that if x\in%5B0;1%5D, then f ‘ (x) \in%5B0;1%5D.

2)Prove by recurrence that, for any natural number n, 0\leq\,\,u_n\leq\,\,1.

3)Determine the direction of variation of the sequence (u_n).

Exercise #8:

The sequence (u_n) is defined by u_1=1 and for all n\in\,\mathbb{N}^*,

u_{n+1}=u_n+2n+1.

1)Using a calculator or spreadsheet, determine the first ten

terms of the sequence (u_n).

2)a)What conjecture can be made about the expression of u_n as a function of n?

b) Prove this conjecture by recurrence.

Exercise #9:

Show by recurrence that, for any natural number n not zero,

\sum_{q=1}^{n}q^2=\frac{n(n+1)(2n+1)}{6}.

Exercise #10:

Determine the limit of (u_n) defined on \mathbb{N}^* using general theorems.

1)u_n=(1-2n)(n^2+3).

2)u_n=\frac{3}{3+2n}.

3)u_n=4n-1+\frac{5}{\sqrt{n}}.

4)u_n=-n^2-5n+\frac{1}{n}

Exercise #11:

Let (u_n) be the sequence defined by u_0=5 and, for all n\in\,\mathbb{N},

u_{n+1}=-\frac{1}{3}u_n+1.

Let (v_n) be the sequence defined for any natural number n by :

v_n=4u_n-3.

1) Show that the sequence (v_n) is geometric of reason -\frac{1}{3}.

Specify the first term.

2) Determine the expression of v_n as a function of n and deduce that,

for any natural number n :

u_n=\frac{17}{4}\times  \,(-\frac{1}{3})^n+\frac{3}{4}.

3) Determine the limit of the sequence (u_n).

Exercise #12:

Investigate whether the following sequences, defined on \mathbb{N}, are bounded.

1)u_n=(\frac{1}{3})^n-8.

2)u_n=5sin(5n+1)-3.

3)u_n=cos(n^2)-n.

Cette publication est également disponible en : Français (French) العربية (Arabic)

Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «numerical sequences: corrected high school math exercises in PDF.» au format PDF afin de pouvoir travailler en totale autonomie.


D'autres fiches dans la section Math exercises in the final year of high school




Télécharger nos applications gratuites Mathématiques Web avec tous les cours,exercices corrigés.

Application Mathématiques Web sur Google Play Store.    Application Mathématiques Web sur Apple Store.    Suivez-nous sur YouTube.


D'autres articles analogues à numerical sequences: corrected high school math exercises in PDF.


  • 83
    Scalar product: math exercises in high school corrected in PDF.A series of corrected math exercises for the final year of high school on the scalar product. This sheet involves the following concepts: definition of the scalar product; bilinearity property of the scalar product; symmetry of the scalar product; scalar product in the plane and space. The scalar product is…
  • 82
    Complex numbers: math exercises in high school corrected in PDF.This series of exercises on complex numbers in the final year of high school involves the following concepts: definition of a complex number; arithmetic writing; algebraic writing; Euler's formula; Moivre's formula; affix of a complex number; exponential writing; geometric aspect of complex numbers. In the senior class, we deepened our…
  • 82
    Integrals : corrected high school math exercises in PDF.Corrected math exercises on integrals and primitive calculus in the final year of high school to download for free in pdf format. These exercises involve the calculation and determination of a primitive as well as all the properties of the integral operator. These sheets involve the following concepts: primitive; linearity…
Les dernières fiches mises à jour

Voici la liste des derniers cours et exercices ajoutés au site ou mis à jour et similaire à numerical sequences: corrected high school math exercises in PDF. .

  1. Functions and limits: senior math exercises corrected in PDF.
  2. Fonctions et limites : exercices de maths en terminale corrigés en PDF.
  3. الوظائف المعتادة: دورة الرياضيات في المركز الثاني للتحميل بصيغة PDF.
  4. Usual functions : maths course in 2nd grade to download in PDF.
  5. Fonctions usuelles : cours de maths en 2de à télécharger en PDF.


Inscription gratuite à Mathématiques Web. Mathématiques Web c'est 2 145 969 fiches de cours et d'exercices téléchargées.

Copyright © 2008 - 2023 Mathématiques Web Tous droits réservés | Mentions légales | Signaler une Erreur | Contact

.
Scroll to Top
Mathématiques Web

FREE
VIEW