Orthogonalité et équations de droites : cours de maths en 1ère S et leçon en PDF en première

cours maths 1ere

I. Vecteurs directeurs et équations cartésiennes

Dans tout ce chapitre, on se place dans un repère orthonormé (O,\vec{i},\vec{j}).

1.Vecteur directeur d’une droite.

Définition :

On appelle vecteur directeur d’une droite (d) tout représentant du vecteur \vec{AB}

A et B sont deux points quelconques et distincts de la droite (d).

Exemple :

Dans l’image ci-dessous, les vecteurs \vec{AB}(2;1), \vec{u}(-2;-1) et \vec{v}(4;2) sont des vecteurs

directeurs de la droite (d).

vecteur directeur

Application et méthode :
  1. On calcule les coordonnées d’un vecteur directeur de la droite.
  2. La droite (BC) et sa parallèle ont les mêmes vecteurs directeurs, il suffi d’en prendre un représentant d’origine A.

Exemple :

Soient trois points A(1;5), B(-3;2) et C(2;-1) dans un repère orthonormé.

  1. Déterminer un vecteur directeur de la droite (BC).
  2. Détailler la construction de la parallèle à (BC) passant par A.

2. Equation cartésienne de droite.

Théorème :

Dans un repère orthonormé, les coordonnées de l’ensemble des points M(x;y)

d’une droite vérifient une relation ax+by+c=0 où a, b et c sont des nombres réels.

Démonstration :

Soient P(x_P;y_P) et Q(x_Q;y_Q)  deux points d’une droite (d).

Alors, pour tout point M(x;y) appartenant à (d), nous avons :

les vecteurs \vec{PM}(x-x_P;y-y_P) et \vec{PQ}(x_Q-x_P;y_Q-y_P) sont colinéaires.

On a donc det(\vec{PM};\vec{PQ})=0.

C’est-à-dire (x-x_P)(y_Q-y_P)-(y-y_P)(x_Q-x_P)=0.

x(y_Q-y_P)-x_P(y_Q-y_P)-y(x_Q-x_P)+y_P(x_Q-x_P)=0

donc (y_Q-y_P)x+(x_P-x_Q)y+(y_Px_Q-x_Py_Q)=0.

En posant  a=y_Q-y_Pb=x_P-x_Q  et c=y_Px_Q-x_Py_Q,

on a donc l’équation de la droite (d) qui est de la forme  ax+by+c=0.

Définition :

La relation ax+by+c=0 s’appelle une équation cartésienne de la droite (d).

Propriété :

Le vecteur \vec{u}(-b;a) est un vecteur directeur de la droite (d) d’équation cartésienne ax+by+c=0.

Exemple :

Si la droite (d) a pour équation cartésienne 5x+4y-11=0, alors le vecteur \vec{u}(-4;5)

est un vecteur directeur de cette droite.

II. Positions relatives de droites

1.Droites parallèles ou sécantes

Théorème :

Soient deux droites (d) et (d’) d’équations cartésiennes respectives ax+by+c=0 et a'x+b'y+c'=0a,b,c,a',b',c' sont des nombres réels.

Les droites (d) et (d’) sont parallèles si, et seulement si, ab'-a'b\neq0.

Preuve :

Des vecteurs directeurs des droites (d) et (d’) sont, respectivement, \vec{u}(-b;a) et \vec{v}(-b';a').

Les droites (d) et (d’) sont sécantes si, et seulement si, les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires.

Autrement dit, si le déterminant de ces deux vecteurs est non nul.

Soit, -ba'-(a(-b'))=-ba'+ab'=ab'-a'b\neq0.

2. Droites sécantes et systèmes d’équations

Théorème :

Lorsque deux droites sont sécantes, les coordonnées (x;y) de leur point d’intersection

sont solution du système :

système d'équations

3. Droites perpendiculaires

Théorème :

Soient deux droites (d) et (d’) d’équations cartésiennes respectives ax+by+c=0 et a'x+b'y+c'=0a,b,c,a',b',c' sont des nombres réels.

Les vecteurs directeurs des droites (d) et (d’) sont, respectivement, \vec{u}(-b;a) et \vec{v}(-b';a').

Les droites (d) et (d’) sont perpendiculaires si, et seulement si, \vec{u}.\vec{v}=0 soit aa'+bb'=0.

Preuve :

Les vecteurs directeurs des droites (d) et (d’) sont, respectivement, \vec{u}(-b;a) et \vec{v}(-b';a').

Les droites sont perpendiculaires si, et seulement si, ces deux vecteurs directeurs sont orthogonaux.

Ce qui revient à dire que le produit scalaire de ces deux vecteurs est nul, soit :

\vec{u}.\vec{v}=0

Ce qui équivaut à :

-b\times   (-b')+a\times   a'=0 soit aa'+bb'=0.

5/5 - (1 vote)


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «orthogonalité et équations de droites : cours de maths en 1ère S et leçon en PDF en première» au format PDF afin de pouvoir travailler en totale autonomie.


Télécharger nos applications gratuites Mathématiques Web avec tous les cours,exercices corrigés.

Application Mathématiques Web sur Google Play Store. Application Mathématiques Web sur Apple Store.


D'autres articles analogues à orthogonalité et équations de droites : cours de maths en 1ère S et leçon en PDF en première

Mathématique web est un site de mathématiques destinés aux élèves et professeurs du collège (6ème, 5ème, 4ème et 3ème) au lycée (2de, 1ère et terminale. Vous trouverez sur ce site de nombreuses ressources vous permettant de vous familiariser avec les mathématiques. Toutes les cours et exercices de maths similaires à orthogonalité et équations de droites : cours de maths en 1ère S et leçon en PDF en première sont rédigés par des professeurs et sont conformes aux programmes officiels de l'éducation nationale.

  • 68
    Une évaluation de mathématiques en classe de sixième (6ème). Ce contrôle de maths est une évaluation diagnostique afin d'évaluer le niveau des élèves en maths à l'entrée de la sixième. Ces documents sont adressés aux enseignants de mathématiques pour le niveau sixième. L'entrée de la sixième série 1 L'entrée de…
  • 66
    Maths 2de : cours, exercices corrigés en PDF en seconde.Les maths en 2de au programme de la classe de seconde sur Mathémétiques Web , vous trouverez de nombreux documents afin de réussir en mathématiques en seconde (2de). Vous venez d'entrer en seconde et vous observez une grande différence entre le collège et notemment la classe de troisième. Vous trouverez sur…
  • 66
    Maths Terminale : cours, exercices corrigés en PDF.Les maths en terminale S, vous trouverez sur ces pages des centaines de documents de mathématiques vous permettant de réussir votre année de terminale en mathématiques. Tous ces cours, exercices et contrôles vous permettront, également, de vous préparer pour l'examen du baccalauréat de mathématiques. Les nombres complexes Le cours Les…
  • 66
    Maths 1ère : cours, exercices corrigés en PDF en première SLes maths en première S sur Mathématiques Web, vous trouverez sur cette page toutes les ressources nécessaires afin de vous faire progresser en mathéatiques et réussir votre année de première en maths. Ces documents sont destinés aux enseignants mais également aux élèves voulant combler leur lacunes en mathématiques ou tout…
  • 63
    Un formulaire des différentes formules d'aires et volumes dans l'espace. Ce formulaire est à télécharger gratuitement au format PDF. Vous y retrouverez : - la formule de l'aire d'un carré; - la formule de l'aire d'un rectangle; - la formule de l'aire d'un parallélogramme; - la formule de l'aire d'un…
Les dernières fiches mises à jour

  1. Les équations : cours de maths en 4ème avec leçon en quatrième en PDF.
  2. Volumes : cours de maths en 5ème avec leçon en cinquième en PDF.
  3. Probabilités : cours de maths en 5ème avec leçon en cinquième en PDF.
  4. Exercices de maths corrigés à télécharger en PDF.
  5. Cours de maths à télécharger en PDF au collège et lycée.
  6. Maths : cours et exercices corrigés en PDF de mathématiques.
  7. Angles : cours de maths en 5ème avec leçon en cinquième en PDF.
  8. Statistiques : cours de maths en 5ème avec leçon en cinquième en PDF.
  9. Proportionnalité et pourcentages : cours de maths en 5ème, leçon en PDF.
  10. Homothéties : cours de maths en 3ème avec leçon en PDF en troisième.


Chaîne Youtube

Inscription gratuite à Mathématiques Web.  Mathématiques Web c'est 2 072 520 fiches de cours et d'exercices téléchargées.
Rejoignez les 46 270 membres de Mathématiques Web, inscription gratuite.