Calcul littéral : cours de maths en 3ème en PDF.

webmaster
14 avril 2025

    Le calcul littéral et les trois identités remarquables à travers un cours de maths en 3ème avec la définition du développement d’une expression littérale et la factorisation. L’élève devra savoir développer et factoriser une expression littérale et également, substituer une valeur. De plus, il doit être en mesure de bien utiliser les identités remarquables afin de développer des compétences en calcul algébrique.  C’est un chapitre à comprendre pour ne pas avoir des complications lors du contrôle. Nous terminerons cette leçon sur le calcul littéral avec des exemples concret issus de la vie courante ou de la géométrie en troisième.

I. Expression littérale et vocabulaire :

Définition :

Une expression littérale est une expression contenant des lettres.

Exemple : 2x^2+5x+7

Remarque :

le calcul numérique est un cas particuliers du calcul littéral. Par conséquent, le calcul littéral est un outil très puissant nous permettant de traiter des généralisations de situations.

Définition :

Développer une expression littérale, c’est l’écrire comme une somme de termes.

Propriété de la simple distributivité :

Soient k, a et b trois nombres relatifs.k(a+b)=ka+kb\\k(a-b)=ka-kb

Propriété de la double distributivité :

Soient a, b, c et d quatre nombres relatifs.(a+b)(c+d)=ac+ad+bc+bd

Exemples :

Nous avons vu dans les niveaux précédents, deux propriétés qui permettent de développer une expression littérale : la simple et la double distributivité.

A=(x-3)(x+7)=x^2+7x-3x-21

B=-3(x-2)+7(x-4)=-3x+6+7x-28

Définition :

Réduire une expression littérale, c’est regrouper tous les termes de même nature.

Exemples :

A=(x-3)(x+7)=x^2+7x-3x-21=x^2+4x-21

B=-3(x-2)+7(x-4)=-3x+6+7x-28=4x-22

Définition de la factorisation :

Factoriser une expression littérale, c’est l’écrire comme produit de facteurs.

Remarque :

La factorisation est le « processus » inverse du développement.

Exemples :

A=7x-21=7x-7\times 3=7(x-3)

B=(x+2)(2x-3)+(x+2)(2x-4)=(x+2)[(2x-3)+(2x-4)]=(x+2)(4x-7)

II. Les identités remarquables

1.Carré d’une somme

Propriété :

Soient a et b deux nombres relatifs.(a+b)^2=a^2+2ab+b^2

Preuve :

(a+b)^2=(a+b)(a+b)=a^2+ab+ba+a^2=a^2+2ab+b^2

2.Carré d’une différence

Propriété :

soient a et b deux nombres relatifs.(a-b)^2=a^2-2ab+b^2

Preuve :

(a-b)^2=(a-b)(a-b)=a^2-ab-ba+a^2=a^2-2ab+b^2

3.Produit d’une somme et d’une différence de deux nombres avec le le calcul littéral  

Propriété :

Soient a et b deux nombres relatifs.(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

Exemples :

A=(x+1)^2=x^2+2\times x\times 1=x^2+2x+1\\B=(x-3)^2=x^2-2\times x\times 3+3^2=x^2-6x+9\\C=(x-5)(x+5)=x^2-5^2=x^2-25\\D=99\times 101=(100-1)(100+1)=100^2-1^2=10000-1=9999\\E=(2x-7)^2=(2x)^2-2\times 2x\times 7+7^2=4x^2-28x+49

Homothéties : cours de maths en 3ème en PDF.

   Les homothéties à travers un cours de maths en 3ème avec définition de la transformation ainsi que les différentes propriétés de conservation puis les effets sur les agrandissements ou réductions de figures. L’élève devra savoir construire l’image d’une figure par une homothétie de centre O et de rapport k à l’aide du matériel de géométrie […]

Statistiques : cours de maths en 3ème en PDF.

   Les statistiques à travers un cours de maths en 3ème avec la définition de notion de moyenne, de médiane et d’étendue d’une série statistiques ainsi que l’histogramme, le diagramme en bâtons et circulaire. L’élève devra être capable d’étudier une série statistique en déterminant sa moyenne ou sa médiane connaissant la valeur de l’effectif total. Développer des […]

Volumes : cours de maths en 3ème en PDF.

   Le volume d’un solide et l’étude de sections de solides dans l’espace à travers un cours de maths en 3ème. Des  situations de réduction ou d’agrandissement en troisième est essentiel pour la progression de l’élève. L’élève devra connaître ses formules par cœur et savoir représenter des solides dans l’espace avec la perspective cavalière ou encore, savoir […]

Notez Mathématiques Web !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager