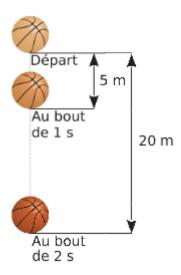


Proportionnalité et pourcentages

I. Situation de proportionnalité

1.Grandeurs proportionnelles

Définition:


Deux grandeurs sont proportionnelles lorsque l'on peut passer de l'une à l'autre

en multipliant toujours par un nombre unique non nul.

Si c'est le cas, ce nombre, noté a, est appelé le **coefficient de proportionnalité**.

Exemple:

- La longueur du côté et le périmètre d'un carré sont proportionnels car le périmètre d'un carré s'obtient en multipliant la longueur de son côté par 4.
- Voici la distance parcourue par un ballon en chute libre. En 1 s, il parcourt 5 m et en 2 s, il parcourt 20 m. Pour passer de la durée de chute à la distance parcourue, on ne multiplie pas par un même nombre, donc la durée de chute et la distance parcourue par le ballon ne sont pas proportionnelles.

2. Tableau de proportionnalité

Propriété:

Lorsque l'on résume les différentes valeurs prises par deux grandeurs dans un tableau, ce tableau est appelé **tableau de proportionnalité**.

Propriété:

Dans un tableau de proportionnalité, on passe des valeurs de la première grandeurs à celles de la seconde en multipliant par le **coefficient de proportionnalité**.

Exemple:

A la vitesse de 70 km/h, une voiture consomme 5 L aux 100 km.

- La consommation de carburant et la distance parcourue sont proportionnelles.
- A cette vitesse, quand la voiture parcourt une distance de 1 km, elle consomme 0,05 L. On peut regrouper ces résultats dans un tableau de proportionnalité.

Kilométrage parcouru	100	1	15	(V 0.05)
Consommation (en L)	5	0,05	?	₹ (X 0,03)

- A cette vitesse, la consommation, en litres de carburant, est égale au produit du nombre de kilomètres parcourus par 0,05 qui est le coefficient de proportionnalité.
- Dans cette situation de proportionnalité, le coefficient permet de calculer la consommation à partir du nombre de kilomètres parcourus. Par exemple, à cette vitesse et pour 15 km, la consommation sera $15 \times 0.05 = 0.75$ L.

II. Applications de la proportionnalité

1.Appliquer à un pourcentage

Exemple:

Lors des soldes, une réduction de 15 % est accordée sur les articles d'un magasin.

Cela signifie que :

- la réduction et le prix initial d'un article sont proportionnels;
- si le prix initial d'un article est de 100 € alors la réduction est de 15 €.

On cherche la réduction d'un article coûtant 80 €. On regroupe ces données dans un tableau de proportionnalité.

Prix initial	100	80	(V 0.15)
Réduction	15	?	 √ 0,13)

Le coefficient de proportionnalité est 0,15.

Donc la réduction recherché est égale à $80 \times 0, 15 = 12 \in$.

Propriété:

Pour calculer x % d'une quantité, on multiplie cette quantité par x puis, on divise par 100.

Exemple:

25 % de 350 est égal à
$$\frac{350 \times 25}{100} = 87, 5$$
.

2.Echelle

Définition:

L'échelle d'une carte ou d'un plan est le coefficient de proportionnalité qui permet de passer des longueurs réelles aux longueurs sur la carte ou sur le plan.

$$Echelle = \frac{distance\, sur\, plan}{distance\, reelle}$$

Exemple:

Ce dessin représente le plan d'un hélicoptère SA365 Dauphin.

Dans la réalité, il a pour hauteur 3,9 m, donc l'échelle est de :

$$\frac{distance\,sur\,le\,plan}{distance\,reelle} = \frac{2,6}{390} = \frac{1}{150}.$$

Ce qui signifie que 1 cm sur plan correspond à 150 cm en réalité.

Distance réelle (en cm)	390	x	1 (150)
Distance sur le plan (en cm)	2,6	7,75	√ 150 × 150

La longueur réelle de l'appareil est donc $x=7,75~\times~150=1\,162,5~cm$.