Exercices de maths en terminale

Intégrales

EXERCICE N° 1:

Calculer la valeur des deux intégrales suivantes :

a)
$$\int_0^4 3dx$$
; b) $\int_3^7 (\frac{1}{2}t + 2dt)$

EXERCICE N° 2:

f est la fonction définie sur $\mathbb R$ par $f(x)=rac{e^x}{(e^x+1\)^2}.$

Pour chacune des fonctions définies ci-dessous, dire s'il s'agit d'une primitive de f sur \mathbb{R} .

$$F_1(x) = \frac{-1}{e^x + 1}$$

$$F_2(x) = \frac{2e^x + 1}{e^x + 1}$$

$$F_3(x) = \frac{2e^{-x} + 1}{e^{-x} + 1}$$

$$F_4(x) = \frac{e^{-x} + 2}{e^{-x} + 1}$$

EXERCICE N° 3:

Déterminer une primitive sur $\mathbb R$ des fonctions numériques suivantes :

a)
$$f(x) = 5x^4 - 3x + 7$$
, $I = \mathbb{R}$
b) $g(x) = 4(3x - 1)^5$, $I = \mathbb{R}$
c) $h(x) = \frac{7x}{x^2 + 4}$, $I =] - 4; +\infty[$
d) $i(x) = 3xe^x$, $I = \mathbb{R}$

EXERCICE N° 4:

a) Démontrer que pour tout réel t de l'intervalle [0;1],

$$2 - 2e^t < 2 - 2e^t < 0$$

b) Démontrer que, pour tout nombre réel t de l'intervalle $[1; +\infty[$

$$2 - 2e^{t^2} \le 2 - 2e^t$$

c) En déduire :

$$\bullet$$
 un encadrement de $\int_0^1 (2-2e^{t^2})dt$

• l'inégalité
$$\int_1^5 (2-2e^{t^2})dt \leq 8+2(e-e^5)$$

EXERCICE N° 5:

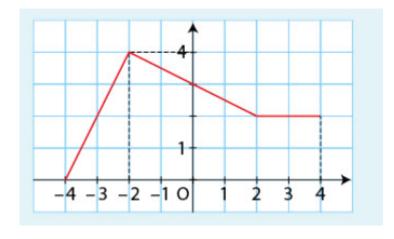
Démontrer que pour tout entier naturel n,

$$0 \le \int_0^1 \frac{x^n}{1+x} dx \le \ln 2$$

EXERCICE N° 6:

Dans le repère orthonormé ci-dessous, on a tracé la courbe représentative d'une fonction f définie

et continue sur l'intervalle [-4;4].



Calculer les intégrales suivantes :

$$a) \int_{-4}^{-2} f(t)dt$$
$$b) \int_{-2}^{2} f(t)dt$$
$$c) \int_{2}^{4} f(t)dt$$

EXERCICE N° 7:

Calculer chacune des intégrales suivantes :

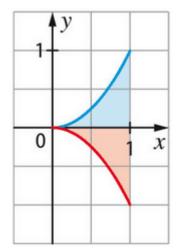
a)
$$\int_{-2}^{1} 5dx$$

b) $\int_{-1}^{2} (-t+4)dt$
c) $\int_{-3}^{3} (x+3)dx$
d) $\int_{0}^{5} (2x+1)dx$
e) $\int_{-2}^{2} (1-\frac{x}{2})dx$
f) $\int_{-1}^{1} (1-|x|)dx$

EXERCICE N° 8:

Sur le graphique ci- dessous sont tracées les courbes représentatives des fonctions f et g définies sur [0 ; 1] par $f(x)=x^2$ et $g(x)=-x^2$ et deux surfaces limitées par ces courbes.

- 1. Calculer l'aire, en unités d'aire, de la surface colorée en bleu.
- 2. En déduire, sans calcul, l'aire, en unités d'aire, de la surface colorée en rouge.
- 3. Retrouver l'aire précédente par un calcul d'intégrale.

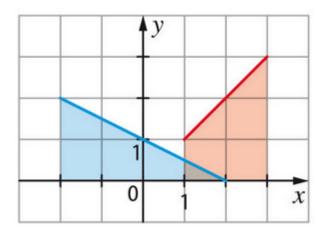


EXERCICE N° 9

Pour l'exercice, indiquer si l'affirmation est vraie ou fausse, puis justifier.

Soit
$$I = \int_1^3 x dx$$
 et $J = \int_{-2}^2 -0.5x + 1 dx$.

Par lecture graphique sur le schéma ci-contre I = J.



EXERCICE N° 10:

Déterminer une primitive de chacune des fonctions f, g et h sur $\mathbb R$ par leurs expressions.

$$1)f(x) = 2xe^{x^2-3}; g(x) = \frac{x}{x^2+4}; h(x) = \cos(x)\sin^2(x).$$

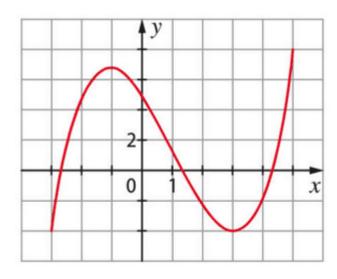
$$2)f(x) = \frac{2x+1}{x^2+x+1}; g(x) = \frac{x}{(x^2+1)^2}; h(x) = x(x^2+5)^{-3}.$$

$$3)f(x) = xe^{-x^2}, g(x) = \frac{e^x}{e^x + 1}; h(x) = \frac{8x}{\sqrt{2x^2 + 1}}.$$

EXERCICE N° 11:

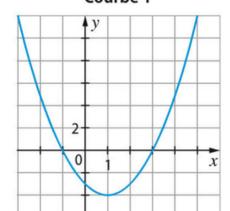
Soit une fonction f définie sur [- 3; 5].

La courbe ci-dessous représente une primitive F sur [- 3; 5] de f.

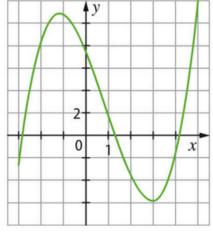


Parmi les deux courbes représentées ci-dessous, laquelle représente la fonction f? Justifier.

Courbe 1



Courbe 2



EXERCICE N° 12:

Pour tout entier naturel n, on pose :

$$I_n = \int_n^{n+1} \frac{1}{x} dx.$$

- 1)a) Encadrer l'inverse de x sur [n ; n+1].
- b) Calculer $\int_{n}^{n+1} \frac{1}{n} dx$.
- c) Démontrer que $\frac{1}{n+1} \leq I_n \leq \frac{1}{n}$.
- 2) En déduire la limite de la suite (I_n) .

