

Exponentielle

EXERCICE N° 1:

Ecrire à l'aide d'une seule exponentielle :

- $\mathsf{a.}~\frac{1}{e^3}$
- b. $e^{-2} \times e^{7}$

EXERCICE N° 2:

f est une fonction dérivable sur $\mathbb R$ telle que $f'=f\ et\ f(0)=-rac{1}{2}.$

g est la fonction définie sur \mathbb{R} par g(x) = -2f(x).

- 1. Vérifier que g est dérivable sur $\mathbb R$ et que g' = g.
- 2. Calculer g(0); en déduire l'expression de g(x).
- 3. En déduire l'expression de f(x).

EXERCICE N° 3:

Dans chaque cas, écrire l'expression avec une seule exponentielle.

- 1.
- a. $e^4 \times \ e^6$
- b. $e \times (e^5)^2$
- c. $\frac{e^{30} \times e^{-10}}{e^{10}}$
- 2. a désigne un nombre réel, simplifier l'écriture de chaque expression :

a)
$$\frac{e^{2a} \times e^{-a}}{e^{5a}}$$
; b) $\frac{e^{2a} + 1}{e^{1-a}}$; $c)(e^a)^3 \times e^{-a}$

EXERCICE N° 4:

f est la fonction définie sur] $-1; +\infty[$ par $f(x)=\frac{e^x}{1+x}.$

Dans un repère, ξ est la courbe représentative de la fonction f et T_a est la tangente à ξ au point A d'abscisse a avec a>-1.

- 1. donner une équation de T_a .
- 2. Démontrer qu'il existe deux valeurs de a pour lesquelles T_a passe par l'origine du repère.

EXERCICE N° 5:

On modélise la température moyenne T à l'intérieur d'un congélateur en posant :

 $T(t)=19, 5e^{-7 imes~10^{-4}t}-10, 5~$ où $t\in[0;+\infty[$ correspond au temps, exprimé en minutes, écoulé

depuis sa mise en marche et T(t) sa température en °C.

- 1. Donner la température moyenne à l'intérieur du congélateur :
- a. avant sa mise en marche;
- b. après une journée de fonctionnement.
- 2. Etudier la limite de T en $+\infty$ et interpréter le résultat obtenu.

EXERCICE N° 6:

Ecrire les réels donnés sous la forme exponentielle e^k où ${\bf k}$ est un entier.

$$1)e^{-7} \times e^{3}$$

$$(2)e^{-1} \times e^{-5}$$

$$3)e^2, \times e$$

$$4)e \times e^{-1}$$

$$5)\frac{1}{e}$$

$$6)\frac{1}{e^{-1}}$$

- $7)\frac{1}{e^2}$
- $8)\frac{1}{e^{-3}}$
- $9)\frac{e^{-3}}{e^2}$
- $10)\frac{e}{e^{-1}}$
- $11)\frac{e^{-2}}{e}$
- $12)\frac{e^2\times\,e^{-3}}{e^5}$
- $(13)(e^2)^3$
- $(14)(e^3)^2$
- $(15)(e^{-1})^6$
- $16)e \times (e^{-1})^3$

EXERCICE N° 6:

Ecrire l'expression donnée sous la forme $e^{\cal A}$ où ${\bf A}$ est une expression.

- $1)e^x, \times e^2$
- $2)e^{-1} \times e^{-x}$
- $3)e \times e^x$
- $4)e^x \times e^x$
- $5)e^x \times e^{-x}$
- $6)e^{x-1} \times e^x$
- $7)(e^x)^2$
- $8)(e^{-x+1})^3$
- $9)(2e^x)^3$
- $10)\frac{e^{5x}}{e^x}$

$$11)\frac{e^{x+1}}{e}$$

$$12)\frac{e^3}{e^{2x-1}}$$

EXERCICE N° 7:

On donne l'expression de trois fonctions f,g et h définies et dérivables sur \mathbb{R} .

Calculer la dérivée des fonctions f, g et h.

1)
$$f(x) = e^{0.5x}$$
; $g(x) = e^{3x}$; $h(x) = e^{-x}$.

$$(2)f(x) = e^{x+1}; g(x) = e^{1-2x}; h(x) = e^{-3x+1}$$

$$3) f(x) = 2 + e^{2x}; g(x) = 1 - e^{-2x}; h(x) = e^{-3x+1}$$

$$4)f(x) = 2 + e^{2x}; g(x) = 1 - e^{-2x}; h(x) = 1 + 2e^{-x}$$

EXERCICE N° 8:

On estime que les futures découvertes de pétrole dans le monde peuvent être modélisées, à partir de 2015, par la fonction f définie sur [15 ; $+\infty$ [par:

$$f(x) = 17280e^{-0.024x}$$

où f(x) représente, en millions de barils, l'estimation de la quantité de pétrole qui sera découverte au cours de l'année 2000 + x.

- 1. Déterminer la limite de la fonction f en $+\infty$.
- 2. Calculer f'(x) et en déduire le sens de variation de la fonction f sur l'intervalle [15; $+\infty$ [.
- 3. Interpréter les résultats des questions 1 et 2.

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2 - e^x + x$.

- 1. Exprimer f'(x) en fonction de x.
- 2) Justifier que, pour tout réel x de l'intervalle $[0; +\infty[$, $f'(x) \le 0$.
- 3) En déduire les variations de la fonction f sur \mathbb{R} .

EXERCICE N° 10:

Ecrire les expressions suivantes sous la forme exponentielle e^A , où A est une expression.

1)
$$\frac{e^{2x+1}}{e^{1-x}}$$

$$2)\frac{e^{-x+2}\times e^{-2x-1}}{e^{3x+2}\times e^{-x-1}}$$

$$3)\frac{(e^{-x})^2 \times e^{-x+1}}{e^{x+2} \times (e^{-x-1})^3}$$

EXERCICE N° 11:

Démontrer les égalités suivantes :

Pour tout réel x, $-2e^{2x} + 3e^x + 2 = (1 - 2e^x)(2 - e^x)$.

Pour tout réel x, $\frac{e \times e^x}{e^{2+3x}} = (e^{-x-0.5})^2$.

Pour tout réel x, $\frac{e^{1-3x}}{1+e^{-3x}}=\frac{e}{e^{3x}+1}$

EXERCICE N° 12:

- 1)Démontrer que l'équation $e^x-2e^{-x}+1=0$ est équivalente à l'équation $(e^x)^2+e^x-2=0$.
- 2)Résoudre dans $\mathbb R$ l'équation $e^x-2e^{-x}+1=0$.

EXERCICE N° 13:

- 1)Résoudre dans \mathbb{R} l'inéquation $e^{-x} e^x > 0$.
- 2)En déduire le signe de $1-\frac{1+e^x}{1+e^{-x}} \operatorname{sur} \mathbb{R}.$

EXERCICE N° 14:

Soit f la fonction définie sur \mathbb{R}^* par $f(x)=\frac{e^x+1}{x}$

et g la fonction définie sur \mathbb{R} par $g(x) = \frac{x+1}{e^x}$.

On donne ci-dessous les courbes représentatives \mathcal{C}_f et \mathcal{C}_g des fonctions f et g.

- 1. Conjecturer les limites des fonctions f et g aux bornes de leur ensemble de définition.
- 2. Démontrer ces conjectures.



